硫酸环境电解对热等静压钛合金性能的影响

张林嘉¹ 张海洋² 刘凤娟² 温 辉³ 兰 江³ (1 海装广州局驻贵阳地区军事代表室,贵阳 550014) (2 航天材料及工艺研究所,北京 100076) (3 中国航发贵州黎阳航空动力有限公司,贵阳 550014)

文 摘 酸环境电解去除包套是热等静压成形复杂钛合金构件的关键工序之一。针对目前酸环境电解 对热等静压钛合金性能影响研究较少的现状,研究在40℃的硫酸溶液中,不同电解时间对热等静压TA15钛 合金表面钝化膜、氢含量和力学性能的影响。结果表明:电解时间分别为15、30、45、60 d时,热等静压TA15钛 合金表面钝化膜厚度逐渐增加,到60 d时钝化膜厚度达到了175.3 μm;氢含量在15 d时增幅非常小,平均值 低于2×10⁻⁵,30 d后则显著增加,到60 d时平均氢含量达到5.4×10⁻⁴;热等静压TA15 材料屈服和抗拉强度随着 电解时间的延长逐渐降低,塑性变化不大。硫酸环境电解直接影响热等静压钛合金材料的表面质量和力学性 能,后续需强化工艺控制。

关键词 酸环境,电解,热等静压,钛合金,表面钝化膜,氢含量,力学性能 中图分类号:TG146.2 DOI:10.12044/j.issn.1007-2330.2022.01.010

Effect of Electrolysis in Sulfuric Acid Environment on the Properties of Hot Isostatic Pressing Titanium Alloy

ZHANG Linjia¹ ZHANG Haiyang² LIU Fengjuan² WEN Hui³ LAN Jiang³

(1 Guiyang Military Representative Office of Guangzhou Bureau of Naval Armament Department, Guiyang 550014)

(2 Aerospace Research Institute of Materials & Processing Technology, Beijing 100076)

(3 Guizhou Liyang Aviation Power Co. LTD., Guiyang 550014)

Abstract Removal of tooling by electrolysis was one of the key procedure in hot isostatic pressing (HIP) of complex titanium alloy components. Based on the current studies, there were few works on the properties of titanium alloy prepared by HIP in sulfuric acid environment. The effects of different electrolysis time on the performance of HIP TA15 titanium alloy such as surface passive film, hydrogen content and mechanical properties under 40% sulfuric acid environment were studied. The results show that the thickness of passive film on the surface of TA15 titanium alloy increases gradually at 15, 30, 45, 60 d respectively, and reaches to 175. 3 μ m at 60 d. The increase of hydrogen content is not significant at 15 d with an average of less than 2×10⁻⁵. After 30 d, the average hydrogen content increases remarkably and reaches to 5. 4×10⁻⁴ at 60 d. The yield and tensile strength of HIP TA15 titanium alloy decreases gradually with the prolonging of electrolysis time, while the plasticity is basically unchanged. The surface qualities and mechanical properties of HIP titanium alloy are effected by the time of electrolysis in sulfuric acid environment, subsequent process control need to be strengthened.

Key words Acid environment, Electrolysis, Hot isostatic pressing, Titanium alloy, Surface passive film, Hydrogen content, Mechanical properties

0 引言

钛合金由于具有密度低、比强度高、抗腐蚀性能好、 高/低温性能优异等特点,已经发展成为航空航天领域 的主干材料之一,应用范围也越来越广泛^[1-4]。面向大 尺寸、复杂、薄壁的钛合金构件成形技术一直是金属构 件成形领域的研究热点,钛合金热等静压(HIP)成形技

第一作者简介:张林嘉,1983年出生,工程师,从事航空发动机及钛合金成形工艺研究工作。E-mail:ibelieve5310@126.com

收稿日期:2021-08-10

基金项目:装备预先研究项目(项目编号:41422060206)

术是20世纪70年代发展起来的新型成形技术,该技术 是以热等静压设备为基础,通过将钛合金粉末加热到 一定温度,在高温高压下实现粉末材料致密和成形的 一种制备技术^[5-6]。与传统的铸造、锻造等技术相比, 钛合金热等静压技术有如下优点:材料性能高,可达到 不低于锻件的水平;可近净成形,且易于制备形状复杂 的产品;组织均匀细致,无织构、偏析,残余应力小,尺 寸稳定性好。钛合金热等静压技术兼具精密铸造技术 和高性能锻造技术的优点,在达到材料高性能的同时 可以实现复杂构件近净成形^[7-9]。

钛合金热等静压技术和铸造技术类似,首先是根 据产品结构设计相应的模具(行业内称之为包套),包 套通过各种方式装配后形成类似产品形状的空腔,将 粉末装入空腔中,氩弧焊接后形成一个密闭空间,通过 预留的除气管将密闭空间抽真空,达到一定真空度后 封焊,然后进行热等静压处理,粉末在高温高压下经历 粒子重排、塑性变形和扩散蠕变后达到完全致密,最后 采用机加和电解方式将包套去除,即可得到热等静压 钛合金构件。在目前的工序流程中,包套材料多数选 择低碳钢、不锈钢等,而在热等静压后需要将包套去除, 由于包套材料和钛合金构件已经紧密结合,在复杂构 件近净成形位置处,无法直接加工去除掉包套,国内外 通常采用酸环境电解去除的方式[10-11]。在目前的研究 中,国内外通常把酸环境电解当作去除钢包套的手段, 而没有研究该工序对钛合金构件质量的影响,在航空 航天钛合金构件追求高可靠性的背景下,研究不同电 解时间对热等静压钛合金材料的表面氧化层、氢含量 以及拉伸性能的影响,以此完善热等静压钛合金材料 的质量评价体系,同时为构件进一步的性能优化和提 升奠定基础。

1 实验

1.1 材料

首先需要采用热等静压成形技术制备粉末TA15 钛合金棒材,然后从棒材中取样进行电解试验。热 等静压用TA15钛合金粉末为等离子旋转电极法制 备的球形粉末,形貌如图1所示,粉末粒径分布范围 为45~250 μm,粉末化学成分如表1所示。

将TA15钛合金粉末装入加工好的圆柱形包套中, 通过敲击振实粉末。装粉完成后,通过预留的除气管 对包套进行高温除气,除气温度为650℃,真空度要求 优于5×10⁻³ Pa,除气完成后封焊除气管。对封焊完成 后的包套进行热等静压,热等静压工艺参数为温度 920℃,压力140 MPa,保温保压时间3h。设备采用 Quintus公司的热等静压机,型号为QIH-32。完成热等 静压后将圆柱形包套加工去除,得到热等静压TA15钛 合金棒材。

图 1 TA15 钛合金粉末形貌 Fig. 1 Morphology of TA15 titanium alloy powders

表1 TA15钛合金化学成分

Tab. 1 Chemical composition of alloy powders

Al	V	Mo	Zr	Si	Fe
6.16	2.06	1.56	1.97	0.015	0.05
С	Ν	Н	0	Ti	
0.004	0.013	0.001 3	0.13	Bal.	

1.2 实验方法

从热等静压 TA15 钛合金棒材中取样加工 10 mm×10 mm×10 mm的金相试样、Φ3 mm×25 mm的氢 含量试样、M10 拉伸试样,所有试样放入体积浓度 10%的硫酸溶液中,利用整流器对酸溶液中的试样 通直流电,试样均作为电解阳极,整流器采用稳压模 式,通电电压为5 V,溶液温度为40 ℃,电解时间分别 为15、30、45 和60 d。电解试验完成后,取一半的60 d电解试样做真空退火,真空退火温度为750 ℃/1 h。

配制 Kroll 试剂(Kroll 试剂:2% vol HF,10% vol HNO₃,其余水;腐蚀约20s)对金相试样进行腐蚀,利用 JSM-7900F 热场发射扫描电子显微镜观察微观组织。按照 GB/T 4698.15—2011进行氢含量测试,按照 GB/T 228—2002进行室温拉伸测试。

2 结果与讨论

2.1 表面钝化膜

钛合金表面的钝化膜是瞬时形成的一层很致密 的薄膜,通常电解加工时,钛合金阳极表面在自钝化 膜的基础上进一步被氧化成不同价态的氧化物保护 膜,即阳极钝化膜,使其钝性进一步加强。实验中粉 末TA15钛合金电解电压为5V,略高于自然氧化膜 的击穿电压,但是低于钛合金的电解电压,因此钛合 金表面实际发生的是水的电解,即阴极析氢,阳极析 氧^[12-13]。电解反应发生在溶液与基体的界面处。在 界面处形成的氧不断向粉末TA15钛合金基体渗入, 当氧在钛中的含量超过溶解度极限时,便会生成钛 的各种氧化物。图2所示为不同电解时间下的粉末 TA15钛合金表面钝化膜厚度,在15、30、45和60 d的 4个电解时间下分别取三个位置测量平均厚度,平均

— 72 —

厚度分别为73.3、134.4、147.5、175.3 μm,可见随着 电解时间的延长,钝化膜厚度不断增加。从厚度增 加的幅度来看,电解初期表面钝化膜厚度的增加较 快,但后期速度有所放缓,主要原因是越来越厚的外 层钝化膜对电流传递起到了一定的阻碍作用。

(a) 15 d

(b) **30** d

 $(c) \quad 45 \ d$

(d) 60 d图 2 不同电解时间表面钝化膜形貌Fig. 2 Morphology of surface passive film

在通电的作用下,溶液中的氧浓度逐渐提高,氧 渗入到钛合金基体,使钝化层厚度逐渐提高。外层 的低价钛氧化物不断渗氧,逐渐转变为高价钛氧化 宇航材料工艺 http://www.yhclgy.com 2022年 第1期 物,密度降低,体积增大,且随着电解的持续作用,外 层逐渐疏松,从不同电解时间的图中也可以看到钝 化膜内层更加致密,而外层存在着裂纹、疏松等 缺陷^[14-15]。

2.2 氢含量

不同电解时间下粉末 TA15 钛合金氢含量结果 如表2所示。在40℃温度下,电解试样随电解时间 的延长,氢含量逐渐提高,但变化趋势有一定特点。 与没有经过电解的粉末 TA15 试样相比,在电解15 d 时,氢含量有极少量的增加,但增幅非常小,数值均 小于2×10⁻⁵。当电解至30 d时,氢含量提高近1个数 量级,平均值约为1.63×10⁻⁴。当电解至45 d时氢含 量约为30 d的两倍,平均值约为3.03×10⁻⁴,当电解至 60 d时又进一步增加,平均值约为5.4×10⁻⁴。60 d的 电解试样进行真空退火处理后,氢含量大幅降低,下 降近1个数量级,平均约为5.2×10⁻⁵。

	表2	不同电解时间试样氢含量
Tab. 2	Hvdr	ogen content of electrolytic samples

i usi i i jui ogen eom	tene of electrony the sumpres
电解时间/d	氢含量/×10-6
0	11,13,14
15	20,16,19
30	120,200,170
45	250,310,350
60	420,660,540
60(退火)	66,52,38

分析不同电解时间氢含量变化的原因,电解初 期,电解形成的氧浓度不高,阳极钝化效应形成的氧 化膜是比较致密的低价钛氧化物,对于粉末TA15钛 合金保护作用明显,氢原子渗入比较困难。在电解 15 d以后,电解的氧浓度不断提高,钝化膜外层的低 价钛氧化物不断渗氧,逐渐转变为高价钛氧化物,密 度降低,体积增大,且随着电解的持续作用,外层逐 渐疏松,这导致阴极析出的氢原子以及酸性电解液 逐步渗入到疏松区域氧化膜层内,氢含量明显提高, 因此在电解时间为15~30 d时,氢含量增加过程存在 "破窗效应",当外层氧化膜的疏松达到一定程度后, 氢含量就会有一个显著增加的剧烈变化。电解时间 30 d后,氢含量的增加基本呈线性增长,主要是钝化 膜外层的疏松区域厚度逐渐增加,其氢含量也随之 增长。

由于金属材料在氢的作用下容易出现氢脆现 象,因此《钛及钛合金牌号和化学成分》(GB/T3620.1 -2017)中对钛合金氢含量都有明确的要求,TA15钛 合金要求材料氢含量低于1.5×10⁻⁴,从测试的结果 看,当电解时间超过30d时,粉末TA15钛合金的氢 含量测试结果均超过1.5×10⁻⁴,而经过真空退火后, 氢含量急剧降低,主要是因为氢化物在高温退火时 会发生分解,且氢在钛中溶解度随温度升高而降低。 因此,高温退火时,氢化钛分解,氢的溶解度降低,释 放出来的氢原子逸出钛合金表面。但和未电解的 TA15钛合金相比,退火后的氢含量还是偏高,主要原 因是表面钝化膜的阻挡作用使得氢仍会有少量 残留^[16]。

2.3 拉伸性能

不同电解时间下粉末TA15钛合金拉伸性能测试结果如表3所示。

Tab. 3 Tensile properties of electrolytic samples					
电解时间/	$R_{\rm p0.2}$	$R_{\rm m}^{\prime}$	<i>A</i> /	Z/	
d	MPa	MPa	%	%	
	937	996	17.0	45	
0	935	990	18.0	46	
	942	998	15.5	41	
	889	940	15.5	33	
15	895	945	16.0	48	
	892	938	15.0	38	
	857	908	22.5	50	
30	860	915	20.0	45	
	851	910	18.0	42	
	845	892	16.0	51	
45	824	872	21.0	52	
	836	886	18.5	46	
	781	829	15.5	51	
60	774	831	16.0	43	
	765	826	17.5	48	
	786	835	16.0	41	
60(退火)	794	840	15.5	40	
	778	832	16.5	43	

表 3 不同电解时间试样拉伸性能 Sab. 3 Tensile properties of electrolytic samples

随着电解时间的延长,热等静压TA15 钛合金的 屈服和抗拉强度逐渐降低,延伸率和断面收缩率变 化不大。相比于没有电解的粉末TA15 钛合金试样, 电解15 d时屈服及抗拉强度下降约5%,电解30 d时 下降约9%,电解45 d时下降约11%,电解60 d时下 降约17%,电解60 d退火后下降也约为17%。从拉 伸试验的结果也可以证实,虽然电解时间超过30 d 后粉末TA15 钛合金氢含量较高,但氢基本储存在表 面钝化膜外层的疏松区域,未渗透进钛合金基体,因 此未发生脆性断裂。

根据不同电解时间氢含量的测试结果,氢原子 - 74 -- 进入到粉末TA15钛合金内部的较少,形成的氢化钛 相对也较少,因此氢化物对粉末TA15钛合金的影响 相对较小,对钛合金本身的塑性影响也不大。但是 由于钝化膜厚度的不断增长,钝化膜实际为氧化物 陶瓷层,随着陶瓷层的不断变厚,拉伸试样的有效金 属横截面积变小,因此屈服和抗拉强度逐渐降低。

3 结论

硫酸环境电解试验中,热等静压TA15 钛合金表 面钝化膜随着电解时间的延长厚度逐渐变厚,且电 解增速先期较快,后期逐渐放缓。随着电解时间的 延长,热等静压TA15 钛合金氢含量逐渐增加,但电 解初期增幅非常小,而到电解 30 d 后氢含量增加显 著,后续呈线性增长,真空退火后,氢含量显著降低。 随着电解时间的延长,热等静压TA15 钛合金的屈服 和抗拉强度逐渐降低,延伸率和断面收缩率变化 不大。

酸环境电解对粉末钛合金构件的性能存在实质 性影响,尤其是对长时间电解的构件,需高度关注氢 含量的变化和表面氧化层对构件性能的影响,后续 需开展中性溶液代替酸溶液的可行性研究。

参考文献

[1] LEYENS C, MANFRED P, eds. Titanium and titanium alloys: Fundamentals and applications[D]. John Wiley & Sons, 2003.

[2] 赵永庆.国内外钛合金研究的发展现状及趋势[J]. 中国材料进展,2010(5):1-8.

ZHAO Yongqing. Current situation and development trend of titanium alloy[J]. Materials China, 2010 (5): 1–8.

[3] 邹武装. 钛及钛合金在航天工业的应用及展望[J]. 中国有色金属,2016(1): 70-71.

ZOU Wuzhuang. Application and prospect of titanium and titanium alloys in aerospace industry [J]. Chinese Non-ferrous Metals, 2016(1):70-71.

[4] 张绪虎, 单群, 陈永来, 等. 钛合金在航天飞行器上的应用和发展[J]. 中国材料进展, 2011, 30(6): 28-32.

ZHANG Xuhu, SHAN Qun, CHEN Yonglai, et al. Application and development of titaniumalloys for aircrafts [J]. Materials China, 2011, 30(6): 28–32.

[5] 刘文彬, 陈伟, 王铁军, 等. 粉末钛合金的热等静压 技术研究进展[J]. 粉末冶金工业, 2018, 28(2): 1-7.

LIU Wenbin, CHEN Wei, WANG Tiejun, et al. Research progress of hot isostatic pressing technology of titanium alloy powder[J]. Powder Metallurgy Industry, 2018, 28(2): 1-7.

[6] ZHOU S, SONG B, XUE P, et al. Numerical simulation and experimental investigation on densification, shape deformation, and stress distribution of Ti6Al4V compacts during hot isostatic pressing [J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(1-4): 19-31.

宇航材料工艺 http://www.yhclgy.com 2022年 第1期

[7] 李圣刚, 吕宏军, 何士桓, 等. 低温复杂结构件特种 成形工艺[J]. 宇航材料工艺, 2012, 42(1):82-85.

LI Shenggang, LYU Hongjun, HE Shihuan, et al. Special forming process of cryogenic complicated structural parts [J]. Aerospace Materials & Technology, 2012,42(1):82-85.

[8] 张绪虎, 徐桂华, 孙彦波. 钛合金热等静压粉末冶 金技术的发展现状[J]. 宇航材料工艺, 2016, 46(6): 6-10.

ZHANG Xuhu, XU Guihua, SUN Yanbo. Research progress of Ti products fabricated by hot isostatic pressing (HIP) [J]. Aerospace Materials & Technology, 2016, 46(6): 6–10.

[9] 叶呈武, 王亮, 张绪虎, 等. 钛合金 HIP 近净成形技 术在航天上的应用[J]. 材料导报, 2012, 26(23): 112-114.

YE Chengwu, WANG Liang, ZHANG Xuhu, et al. Application of titanium alloy hip near net shape technique in aerospace[J]. Materials Reports, 2012, 26(23): 112-114.

[10] CAI C, SONG B, XUE P, et al. Effect of hot isostatic pressing procedure on performance of Ti6Al4V: surface qualities, microstructure and mechanical properties [J]. Journal of Alloys and Compounds, 2016, 686: 55–63.

[11] 徐磊,郭瑞鹏,吴杰,等. 钛合金粉末热等静压近净 成形研究进展[J]. 金属学报,2018,54(11):1537-1552.

XU Lei, GUO Ruipeng, WU Jie, et al. Progress in hot isostatic pressing technology of titanium alloy powder [J]. Acta Metallurgica Sinica, 2018, 54(11):1537-1552.

[12] 王庭阁. 电解中钛合金的钝化膜及点蚀[C]//中国:

第五届全国电加工学术年会论文集,1986:31-40。

WANG Tingge. Passivation film and pitting corrosion of titanium alloy in electrolysis [C]//China: Proceedings of the fifth National Electromachining Annual Conference, 1986:31–40.

[13] 刘今起. 在电解加工条件下钛合金的阳极特性[J]. 航空工艺技术,1986(3):10-15.

LIU Jinqi. Anodic Characteristics of titanium alloys in electrochemical machining [J]. Aeronautical Technology, 1986 (3):10-15.

[14] 孙宇博,丘珍珍. 电解加工中电解液对钛合金TC4 型面加工质量的影响研究[J]. 电加工与模具,2015(5): 31-34.

SUN Yubo, QIU Zhenzhen. Study on influence of electrolyte on surface quality of TC4 workpiece in electrochemical machining [J]. Electromachining & Mould, 2015(5):31-34.

[15] 张志金,张明岐,李红英,等. 电解加工技术的表面 完整性研究[J]. 电加工与模具,2018(5):9-13.

ZHANG Zhijin, ZHANG Mingqi, LI Hongying, et al. Study on surface integrity of electrochemical machining [J]. Electromachining&Mould, 2018(5):9-13.

[16] 杨东,郭金明. 钛合金的腐蚀机理及耐蚀钛合金的 发展现状[J]. 钛工业进展,2011(2):5-7.

YANG Dong, GUO Jinming. Corrosion mechanism of titanium alloy and development status of corrosion resistant titanium alloy[J]. Titanium Industry Progress, 2011(2):5-7