涂层改性碳纤维复合材料的微波性能研究*

高文 冯志海 黎义 姚承照

(航天材料及工艺研究所 北京 100076)

文 摘 通过对采用化学气相沉积(CVD)法在碳纤维表面制备 SiC 涂层、SiC — C 共沉积涂层的工艺方法、结构、复合材料电磁参数、复合材料的吸波性能等内容的研究,分析了这两种涂层对碳纤维复合材料微波性能的影响,探讨其涂层改性在防热、隐身双功能复合材料应用中的可能性。

关键词 碳纤维,CVD,涂层,电磁吸波

Microwave Absorption of Composite with Coating Modified Carbon Fiber

Gao Wen Feng Zhihai Li Yi Yao Chengzhao

(Aerospace Research Institute of Material and Processing Technology Beijing 100076)

Abstract The CVD process , material microstructure , electromagnetic wave parameter and reflection characteristics of carbon fiber with silicon carbide coating or SiC - C coating and its composites is studied in this paper. The feasibility of applying these fibers to multifunctional composite materials with functions of thermal protection and electromagnetic-wave stealth is also discussed.

Key words Carbon fiber ,CVD ,Coating ,Electromagnetic wave absorbtion

1 前言

随着航天技术的发展,航天器防热材料正朝多 功能的方向发展。通过增强体采用特殊纤维、基体 树脂中添加电磁吸收剂以及材料结构的设计优化等 技术途径,使其兼有吸波隐身、结构承载、抗核冲击 等多种功能,是多功能防热复合材料研究的发展方 向。

碳纤维升华温度高、升华热值大,是耐烧蚀防热 材料首选的增强材料。碳纤维电阻率较低(10⁻⁶. cm以下),是良导体,电磁波在纤维的表面就被反射 出来,因而碳/酚醛材料是电磁波的强反射体。SiC 的电阻率在 10⁻¹ cm ~ 10⁴ cm 范围内,是半导 体。利用 SiC 涂层或 SiC — C 共沉积涂层改性碳纤 维表面,使材料对电磁波的强反射特性有所降低,使 复合材料具有一定的吸波隐身性能或为吸波结构设 计提供更多的匹配单元。

本项实验中,通过对化学气相沉积(CVD)法制 备 SiC涂层、共沉积涂层的工艺方法的研究,以及对 特殊涂层纤维的结构、复合材料电磁参数、复合材料 吸波性能等内容的研究,分析了它们在防热、隐身双 功能复合材料应用中的可能性。

- 2 实验
- 2.1 原材料
- 2.1.1 碳纤维

含碳量 > 96 %; 直径为 6 µm ~ 12 µm; 截面形状近似圆形、腰子型; 电阻率约 10⁻⁷ cm。

宇航材料工艺 2000 年 第5期

收稿日期:2000-05-19

^{*}本研究为国防预研基金资助项目

高文,1968年出生,工程师,主要从事多功能复合材料的研制工作

2.1.2 三氯甲基硅烷

分子式:CH₃SiCl₃,纯度:99.99%。

2.1.3 甲烷

分子式:CH4,纯度:99.99%。

2.1.4 氨酚醛树脂

技术条件:DFQS--3(略)

- 2.2 纤维表面涂层的制备原理及方法
- 2.2.1 碳纤维表面 SiC 涂层的制备原理及方法

SiC 涂层的制备采用化学气相沉积工艺(CVD), 化学方程式为:

 CH_3SiCl_3 SiC + HCl (1 200)

工艺过程中,三氯甲基硅烷由高纯氢气和氩气 通过鼓泡方式引入沉积炉内,通过控制气体的流速 和沉积时间,控制涂层的厚度。

2.2.2 碳纤维表面 SiC — C 涂层的制备原理及方法

采用化学气相共沉积工艺,在 2.2.1 介绍的方法中,同时通入甲烷气体,可获得 - SiC 相和 C 相 共存的 SiC — C 共沉积涂层,化学方程式为:

 $CH_4 - C + H_2$ (1 200)

工艺过程中,通过调节气体的流速可控制 SiC--C共沉积涂层中 - SiC和C的比例,使它富碳 或富硅,同时也可以按要求制备各种结构成分由内 向外逐渐变化的功能梯度涂层。

2.3 复合材料性能试样的制备

将涂层改性纤维切断为 10 mm 左右,按体积分数 50 %与氨酚醛树脂混合,压制成 1 mm 厚平板,精 密磨削表面后切割成要求尺寸的试样。

2.4 性能测试

2.4.1 微观结构分析

采用扫描电子显微镜和金相显微镜,对纤维的 形貌和成分进行分析。

2.4.2 波导试样电磁参数测试

采用 HP8510B 矢量网络分析仪,按照反射一传 输网络参数法进行复介电常数和磁导率的测量。经 测试该类材料试样基本无磁损耗,故将相对磁导率 设置为1,磁导率的虚部设为零,来提高复介电常数 测试精度。

2.4.3 材料性能试样的吸波性能测试

采用测反射率法,依照 GB2038—94,测试材料 试样对电磁波的吸收率。

3 结果及讨论 — 54 — 3.1 化学气相沉积(CVD)工艺中沉积时间与 SiC 涂层厚度的关系

采用 CVD 工艺在碳纤维表面制备 SiC 涂层过 程中,在三氯甲基硅烷消耗速度恒定(25 g/h)的情 况下,随着反应时间的延长,在碳纤维表面生成涂层 的质量在不断增大,如图 1 所示,增重比与沉积时间 基本上呈线性增加关系。

实验中,将原碳纤维的截面形状近似地看作圆 形,计算可得涂层厚度与沉积时间的关系曲线,见图 2,在开始时,涂层的增长速度较快,但后来随着纤维 直径的增加,厚度增加速度逐渐减慢,例如沉积时间 为48 h 后,涂层厚度仅为1.6μm。结果表明,一方 面,该工艺制备涂层的速度较慢;另一方面,该工艺 可以较精确地控制涂层的厚度。

3.2 SiC 涂层的微观结构和成分分析

表面具有 SiC 涂层碳纤维的横截面金相照片见 图 3,由图可见,改性后的碳纤维表面被一层颜色相 对较暗的部分包裹。该涂层均匀、完整,表明 CVD 工艺的渗透性较强,沉积涂层不受纤维放置位置和 方向的影响,它在纤维的表面均匀增加。

宇航材料工艺 2000 年 第5期

图 3 SiC 涂层碳纤维的横截面图像

Fig. 3 Fiber section with SiC coating

采用扫描电子显微镜,对该涂层的化学成分进 行了能谱分析,见图4,图4(a)、图4(b)分别是未改 性纤维和沉积48h后纤维表面成分的能谱图。

的相对高低可近似地反映 SiC 相对含量的多少。

图 5 是沉积时间与 Si 峰和 O 峰高度比值的关 系图,可见涂层中 SiC 含量随沉积时间的延长而增 多,该结果与 2.1.1 中 SiC 涂层厚度与沉积时间关 系相符。

图 5 涂层中 Si 峰和 O 峰高度比与沉积时间的关系 Fig. 5 Element peak height ratio of Si/O vs time

3.3 SiC 涂层对碳纤维复合材料电磁参数的影响

按照反射 — 传输网络参数法,对含不同厚度 SiC涂层的碳纤维的酚醛树脂复合材料电磁参数进 行了测量,结果为它们的相对磁导率都为1,磁损耗 约为0;不同厚度 SiC涂层碳纤维复合材料的介电常 数差异较大,见图6,图6(a)、图6(b)、图6(c)分别是

、和 tg 在 8.2 GHz ~ 12.4 GHz 频率范围内的测 试数据,从数据可看出以下规律。

宇航材料工艺 2000 年 第5期

(1) 由图 6(a) 可知,碳纤维表面的 SiC 涂层,在 一定程度上可以降低其复合材料的 '。随着涂层厚 度的增加, '逐渐减小,但到一定程度时,值趋于稳 定,如,在 8.2 GHz 处,随涂层厚度的增加,'由 2 026 减小到 520 附近后将不再显著下降;

(2) 由图 6(b) 可知,表面具有 SiC 涂层的碳纤 维与原碳纤维相比,其复合材料的 降低,其下降 幅度比 '的下降幅度大,例如,在 9.2 GHz 处,涂层 厚度从 0 增加到 1.6 µm 时,由 942 减小到 104,下 降了约 9 倍;而 只下降了约 4 倍。

(3)碳纤维表面 SiC 涂层厚度在 0~1.1 µm 时, 其复合材料的 tg 随着涂层厚度的增大而逐渐增 大,纤维表面对电磁波损耗逐渐增大;但涂层厚度大 于1.1 µm 时,tg 随涂层厚度的增大而逐渐减小。

(4) 采用 SiC 涂层碳纤维,可以制备介电常数值 较高(在 9.2 GHz 频率处, '= 520 左右)而介电损耗 较小(tg = 0.2)的复合材料。

3.4 SiC 涂层对碳纤维复合材料电磁吸收率的影响

在 8.2 GHz ~ 12.4 GHz 频率范围内,1.6 µm 厚 度 SiC 涂层碳纤维复合材料(试样厚度 3 mm)对电 磁波的吸收率为 - 1.306 dB ~ - 2.12 dB,见图 7 中 的下面曲线,与无涂层碳纤维复合材料数据(上面曲 线)相比,吸收率有明显的增加,但吸收率较小,直接 应用还起不到较好的吸波隐身效果。

采用共沉积工艺,在碳纤维的表面沉积了大约 1 µm 厚度的 SiC — C 涂层,'、 和 tg 的测试结果分 别见图 8(a)、图 8(b)和图 8(c)。

宇航材料工艺 2000 年 第5期

2

— 56 —

(', and tg) of carbon composite

图例中的 C/ F(SiC + 10 %C) 代表涂层中 C 约占 10 %的碳纤维复合材料试样,C/F(SiC + 20 %C) 代表 涂层中 C 约占 20 %的碳纤维复合材料试样,从数据 可看出: (1) SiC — C 涂层同样可以降低碳纤维复合材料的 '和 ,其中,涂层中 C 含量的变化对 '的改变影响不大,但对 的影响比较明显,涂层中 C 约占 10%的碳纤维复合材料试样的 更低;

(2) SiC — C 涂层对碳纤维复合材料试样 tg 有 影响,共沉积涂层中少量的 C(约 10 %) 使碳纤维复 合材料的 tg 降低,较多的 C(约 20 %) 使碳纤维复 合材料的 tg 提高;

(3) SiC—C 涂层的结构复杂,它对碳纤维复合 材料试样介电常数的影响还有待于深入研究。

4 结论

(1)采用 CVD 工艺,可以在碳纤维表面制备均 匀稳定的 SiC 或 SiC—C 涂层,而且可以较精确地控 制涂层的厚度;

(2)碳纤维表面的 SiC 涂层,可以在一定程度上 使其复合材料的介电常数和介电损耗角正切值减 小;

(3) SiC 涂层碳纤维复合材料对电磁波的反射作用,比碳纤维复合材料电磁波的反射作用有所降低。

(上接第 48 页)

极限低,易变形,可以吸收大量的冲击能量,对冲击 波起到缓冲作用,从而使聚能冲击产生的应力波大 大减弱,同时也降低了冲击速度,对复合材料起到保 护作用。

5 结论

-7

(1) 三维编织碳/环氧复合材料在聚能炸药直接 冲击下,即使药量小到 2 g/m,试样仍被破坏。

(2)在试样和聚能炸药之间加入橡胶的组合体 能够抵抗一定装药量的聚能冲击,因此这种组合可 以对爆炸束附近的结构提供防护。

(3)碳/环氧复合材料不被破坏时,橡胶的厚度

有一个域值 ,不同的药量有不同的域值 ,2 g/ m 药量 导爆索的橡胶厚度是 1.5 mm ,而 8 g/ m 药量导爆索 的橡胶厚度是 7 mm。

(4)在聚能冲击下,三维编织碳/环氧复合材料 沿聚能药条炸裂或炸断,并向内弯曲,破坏方式为纤 维断裂,基体树脂断裂,纤维与基体脱粘与分层,纤 维与树脂的烧损。

参考文献

1 刘玉明. 热塑性复合材料装甲材料. 兵器快报,1993; 0602

2 刘玉明. 金属 — 聚脂 — 纤维复合装甲. 兵器快报, 1993;(112)

宇航材料工艺 2000 年 第5期

— 57 —