以 Ti/V/Cu、V/Cu为中间层的 TiAl 合金 与 40Cr 钢的扩散连接

何鹏 张秉刚 冯吉才 钱乙余

(哈尔滨工业大学现代焊接生产技术国家重点实验室 哈尔滨 150001)

文 摘 用真空扩散连接方法对 TiAl/ Ti/ V/ Cu/40Cr 钢及 TiAl/ V/ Cu/40Cr 钢进行了研究。结果表明,以 Ti/ V/ Cu 作中间层的接头拉伸强度高于以 V/ Cu 作中间层的接头强度。界面分析显示,Ti/ V、V/ Cu、Cu/40Cr 钢的各个结合界面处未形成金属间化合物,而 TiAl/ Ti 的结合界面上有 Ti₃Al 产生;在 TiAl/ V 的界面上有 Ti₃Al χ L 两种金属间化合物产生;界面上脆性金属间化合物的产生是接头发生断裂的原因。

关键词 扩散连接,界面反应,TiAl,Ti₃Al

Diffusion Bonding of TiAl to 40Cr Steel with Interlayers Ti/V/Cu and V/Cu

He Peng Zhang Binggang Feng Jicai Qian Yiyu (National Key Laboratory of Advanced Welding Production Technology HIT Harbin 150001)

Abstract Diffusion bonding processes and its joint properties of TiAl to 40Cr are studied in this paper. Experiments indicate that tensile strength of the TiAl/Ti/V/Cu/40Cr joint is higher than that of TiAl/V/Cu/40Cr joint. Intermetallic compounds and other brittle phases are not found in the joint region of Ti/V, V/Cu, Cu/40Cr, while Ti₃Al is formed at interface of the TiAl/Ti, and Ti₃Al and Al₃V are formed at intrface of the TiAl/V. It is considered that fracture of the joints is caused by these brittle intermetallics at interface.

Key words Diffusion bonding, Interface reacting, TiAl, Ti₃Al

1 前言

TiAl 基合金具有密度小(约为 3.8 g/ cm³)、比强 度高、刚性好、良好的高温力学性能和抗氧化性等优 点,被认为是一种理想的、富有研究开发应用前景的 航空、航天、军事及民用的新型的高温结构材料。

TiAI 基合金在工程上应用,必然要碰上连接问题,包括其自身的连接及与其它材料的连接,尤其是 与其它材料的连接,是实际应用中最常遇到的技术问题^[1],因此开展这方面的研究,得到高力学性能组 构件是有应用前景及现实意义的。

针对 TiAl 基合金力学性能对显微组织十分敏

感,热膨胀系数相当低,与其他材料连接时易产生较 大的内应力的特点,用常规的熔焊方法,接头成分复 杂,热裂倾向严重且极易生成脆性的金属间化合物, 使接头性能极差,很难得到满意的接头,研究推荐用 摩擦焊或扩散焊方法。但摩擦焊接头形式受到限 制,只在一些特殊情况下应用。

而扩散焊可以实现异种材料的高精度、高质量的连接,因此,在大多数情况下采用扩散连接方法进行 TiAl 基合金异材连接。TiAl 基合金与 40Cr 钢进行直接扩散连接,由于界面上 TiC 及 Fe - Al - Ti 系 脆性反应相的生成难以控制,因此接头强度不高。

宇航材料工艺 2000 年 第4期

收稿日期:1999-11-17

何鹏,1972年出生,博士研究生,主要从事钎焊、扩散焊研究工作

为了提高接头的强度,本文针对坦克发动机涡轮构件,加复合中间层对 TiAl 基与 40Cr 钢进行扩散连接。

2 扩散连接工艺参数的选择

在扩散连接过程中,连接温度 T、连接压力 P 及连接时间 t 的选择是影响扩散连接接头质量的决 定因素。其中连接温度是扩散连接最重要的工艺参 数。材料在焊接加热过程中将伴随着一系列物理 的、化学的、力学的和冶金方面的变化,而这些变化 都直接或间接地影响到扩散焊过程和接头质量。从 扩散定律可知:扩散系数与温度有指数关系,即

$$D = D_0 e^{-Q/R}$$

式中:

D₀为扩散常数;

R 为气体常数;

Q为扩散激活能;

T为温度。

由上式可知,温度越高,扩散系数越大,同时温 度越高,金属的塑性变形能力越好,焊接表面达到紧 密接触所需的压力越小。从这两方面来考虑,似乎 焊接温度越高越好,但是加热温度受到被焊接材料 的冶金物理特性方面的严重限制。对于异种金属材 料,焊接温度过高,可能导致在接头中形成金属间化 合物,而增加接头的脆性。因此,不同材料组合的焊 接温度,应根据具体情况通过试验来确定。从大量 的研究结果来看^[2],异种金属的焊接温度取熔点较 低金属熔化温度的 50 % ~ 80 %。根据中间层 Cu 的 熔点较低 (1 356 K),扩散连接温度不易过高的要 求,因此本文选择扩散连接温度在 1 123 K~1 273 K 之间。

连接压力是扩散连接又一重要参数,压力的作 用是使接触界面发生微观塑性变形,促进材料间的 紧密接触,防止界面空洞的产生,为扩散及形成可靠 连接作准备。当连接压力较小时,会造成扩散连接 界面上的微观塑性变形不充分,提供的变形激活能 也很小,焊合率较低,导致接头强度不高;但当连接 压力过大时,会造成接头近区的变形过大。因此连 接压力的选择要适当,针对本文材料特点及文献 [3],本文选择连接压力 *P*=20 MPa。连接时间不是 一个独立的参数,它的选择依赖于连接温度与连接 压力的数值。根据本文中所选择的连接温度和连接 压力的数值,确定连接时间*t*=20 min。

3 试验条件及方法

试验母材的化学成分列于表 1。中间层采用纯 钛箔、钒箔、铜箔,其厚度分别为 30 μ m、100 μ m、20 μ m。用电火花线切割机将 TiAl 及 40Cr 加工成 10 mm ×5 mm ×40 mm 的对接试件,用 320[#]、500[#]、 800[#]金相砂纸逐级磨光,中间层金属钛在 HF 中清 洗 10 s,钒和铜在稀 HNO₃ 中清洗 5 s~10 s。然后将 清理后的带中间层的焊件在 CLEELE—1500 型热/ 力模拟试验机中进行扩散连接。焊后对试样进行拉 伸,并进行电镜分析。

表1 试验材料的化学成分

Tab. 1	Chemical	compositions	of	test	materials
I II	Chieffindan	compositions	O		HALL COL MILLS

%(原子分数)

材料	Al	Ni	Cr	Nb	Ti	V	Fe	Si	С	Ν	0	Mn	S	Р
TiAl	47.2	1.17	0.56	0.11	51.0	-	-	-	-	-	-	-	-	-
40Cr	-	0.18	0.95	-	-	-	基	0.27	0.40	-	-	0.65	0.01	0.01

4 试验结果及分析

— 54 —

4.1 接头拉伸强度比较及断口分析

图 1 为连接温度对接头拉伸性能的影响图(温 度范围在 1 123 K~ 1 273 K),从中可以看出,在同等 扩散连接条件下,TiAl/Ti/V/Cu/40Cr钢扩散连接接 头的拉伸强度均高于TiAl/V/Cu/40Cr钢的扩散连 接接头的拉伸强度。而两者连接温度对接头强度的 影响皆为随着连接温度的提高,接头拉伸强度升高。 造成这种现象的原因是:当温度较低时,被焊材 料的强度仍较高,在同等压力下,塑性变形不够,被 焊表面之间的物理接触形成得不充分,在连接界面 处存在大量的缺陷,没有形成良好的冶金结合,焊合 率较低。见图 2,白色为焊合区,黑色为未焊合区, 接头大部分断于中间层钛与母材钛铝之间,接头强 度较低。随着温度的提高(1 223 K),被焊材料的屈 服强度急剧下降,被焊表面之间物理接触的面积迅 宇航材料工艺 2000年 第4期

速增加,焊合率提高,因此接头的强度提高。

1223K 941705 20KY

(b)

宇航材料工艺 2000 年 第4期

(d) 图 2 不同连接温度下接头断口形貌 (P=20 MPa,t=20 min) Fig. 2 SEM fractographies of bond joint at different

bond temperatures

从图 2 微观断口形貌的 SEM 照片中可以看出, 撕裂的坑处呈典型的脆性解理断裂,平坦的粘着处 也为脆性断裂,断口微区成分分析显示(表 2),撕裂 坑处为 TiAl 基体,平坦的粘着处为 Ti₃Al 金属间化 合物。对于 TiAl/V/Cu/40Cr 钢的接头,接头拉伸强 度均较低,断裂均发生在 TiAl/V 界面上。连接温度 1 273 K下的 TiAl/V/Cu/40Cr 断口 SEM 显示,接头 呈脆性断裂,微区成分分析显示(表 3),断裂发生在 Ti - Al - V 的生成相上。

- 55 -

表 2	接头断口微区成分分析结果
Tab. 2	ED X analysis of fracture interface

%(原子分数)

分析区	Ti	Al	Cr	Nb	V	Cu	Fe
撕裂的坑处	50.19	45.96	2.02	1.83	0.00	0.00	0.00
平坦粘着处	67.90	25.31	3.19	3.61	0.00	0.00	0.00

表 3 接头断口微区成分分析结果

Tab. 3 EDX analysis of fracture interface

%(原子分数)

Ti	Al	Cr	Nb	V	Cu	Fe
39.25	38.97	0.00	2.07	19.71	0.00	0.00

4.2 界面组织分析

图 3 为 TiAl/ Ti/ V/ Cu/ 40Cr 接头的 EPMA 元素 分布电子探针线扫描曲线,从图中可以看出,中间过 渡金属铜与 40Cr 之间,以及中间过渡金属铜与钒之 间,相互扩散并不强烈,没有形成明显的过渡区域, 而在钒钛之间,扩散比较强烈,形成了一个成分逐渐 变化的过渡层,但在元素分布曲线上未见平台出现, 说明在过渡区中未形成金属间化合物。

图 3 TiAl/Ti/V/Cu/40Cr电子探针线扫描 (P=20 MPa,T=1 223 K,t=20 min)

Fig. 3 $\,$ EPMA micro-area line analysis of TiAl/ Ti/ V/ Cu/ 40Cr $\,$

在 TiAl 和 Ti 之间也发生了元素的强烈的相互 扩散(图 4),形成了元素浓度逐渐变化的互扩散层, - 56 — 但焊接温度不同,TiAl和 Ti之间的元素相互扩散距离不同,低温的扩散距离较短,高温时扩散距离较长。

(a) 1 123 K

(b) 1 273 K
图 4 元素浓度分布电子探针线扫描结果 3 000 ×
(P=20 MPa,t=20 min)
Fig. 3 EPMA micro-area line analysis

在元素的浓度分布曲线靠近 TiAl 侧区域内出 现了平台,平台的出现说明了在 TiAl 和 Ti 接触区靠 近 TiAl 侧形成了金属间化合物。

宇航材料工艺 2000 年 第4期

对生成层进行 EDX 分析(表 4),结合 Ti - Al 相 图可以推断,Ti 侧生成层为 (Ti),TiAl 侧为 Ti₃Al。 对比不同接合温度下的反应层可以看出,不同接合 温度下的反应层的化学成分及层结构相同,但在较 高接合温度条件下获得的反应层的厚度要比较低接 合温度的宽,说明在较高温度条件下扩散更充分。

表 4 TIAI/ TI 接合面反应层元素成分(1 123 K) Tab. 4 EDX analysis of TIAI/ Ti interface

%(原子分数)

位置	Al	Ti	Cr	Nb
靠近 TiAl 侧	25.3	74.3	0.33	0.10
靠近 Ti 侧	0.21	99.5	0.09	0.17

图 5 为 TiAl/ V/ Cu/ 40Cr 接头的背散射电子像 及 EPMA 元素分布电子探针线扫描曲线。

图 5 TiAl/ V/ Cu/ 40Cr 电子探针线扫描 (P=20 MPa, T=1 273 K, t=20 min)

Fig. 5 EPMA micro-area line analysis of TiAl/ V/ Cu/ 40Cr

从图中可以看出,在 TiAl 和 V 之间发生了强烈的反应扩散,在 Ti 、Al 、V 的元素浓度分布曲线上出现了多个平台,说明界面上有金属间化合物产生, EDX 分析显示(表 5),靠近金属 V 侧有金属间化合物 Al₃V 生成,靠近 TiAl 侧有金属间化合物 Ti₃Al 生成。

表 5 TiAl/ V 接合面反应层元素成分(1 123 K)

Tab. 5 EDX analysis of TiAl/ V interface

%(原子分数)

位置	Ti	Al	V
靠近V侧	16.62	68.89	14.49
靠近 Ti 侧	60.94	21.34	17.18

5 结论

以 Ti/V/Cu 作为中间层的接头拉伸强度高于以 V/Cu 作为中间层的接头强度;当扩散连接参数为 T= 1 273 K, P = 20 MPa, t = 20 min 时, TiAl/Ti/V/Cu/ 40Cr 钢扩散连接接头的拉伸强度可达 350 MPa。Ti/ V、V/Cu、Cu/40Cr 钢的结合界面处未形成金属间化 合物,而在 TiAl/V 的界面上有 Ti₃Al、Al₃V 两种金属 间化合物产生,界面上脆性金属间化合物的产生是 接头发生断裂的原因; TiAl/Ti 的界面处的反应层结 构为 Ti/(Ti)/Ti₃Al/Ti。

参考文献

2

瀬户佐智生,松本 浩司. TiAl 金属间化合物 と构造
用钢 の扩散接合部 の强度特性. 溶接学会论文集,1998;16
(1):59~61

. 1966 . (6) : 74 ~ 75

3 孙荣禄. 钛合金 —不锈钢扩散连接工艺研究. 哈尔滨 工业大学焊接硕士学位论文, 1996

多层弹性叠片氢气保护钎焊

本成果采用多层大面积弹性薄片组件氢气保护局部钎焊技术,成功地解决了飞行试验用的JZ7 减振器中弹性组件钎焊的 技术关键,工艺难度较大,属先进水平。同时解决了焊接方法、焊料研制、焊接设备、工艺等一系列问题,及时配合完成了JZ7 减振器的研制任务。

本成果在航天产品中有推广应用价值,在民品生产中也获得推广应用。解决了多层弹性叠片组件钎焊的技术难题。

宇航材料工艺 2000 年 第4期

·李连清 ·

- 57 -