干涉预应力在拉压大载下变化规律的比较研究*

郭兰中

(兰州工业高等专科学校 兰州 730050)

(西北工业大学西安 710072)

文 摘 对厚度 6 mm、干涉量 3.1%情况下的硬铝合金 LY12CZ 板销钉干涉配合预应力及其在 35% 0.2、45% 0.2、55% 0.2的拉伸、压缩载荷情况下的变化规律进行了比较实验研究。结果表明,在 3.1%干涉 水平下,干涉配合较适宜在中等及其以下的拉伸载荷环境中工作,此时干涉预应力场的稳定性较好。在压缩 载荷下,干涉配合也是有效的,但为得到稳定的干涉预应力场,同样干涉水平下,压缩载荷要比拉伸载荷低。 关键词 干涉配合,预应力,铝合金

Prestressing of Force-fit and its Characters of Tensile and Compression Load

Guo Lanzhong (Lanzhou Polytechnical College Lanzhou 730050)

Xing Wenzhen (Northwestern Polytechnical University Xi an 710072)

Abstract The paper deals with the experiment on force-fit of hard-aluminum alloy L Y12CZ sheet under the 6 mm thickness with 3.1 % force-fit level , and under tension and compression load levels of 35 % $_{0.2}$, 45 % $_{0.2}$ and 55 % $_{0.2}$. The study shows that the force-fit is suitable for middle to low levels of tensile load under 3.1 % force-fit level. Under compression ,the force-fit is also effective , but in order to achieve stable prestressing , the level of compression load needs to be lower in contrast with tensile load of same force-fit level.

Key words Force-fit , Prestressing , Aluminum alloy

1 引言

在金属连接结构上采用干涉配合机械连接技术 能成倍地提高连接接头的疲劳强度^[1],且具有良好 的经济性。因为,这一强化技术能在不增加结构质 量,不改变结构形式及剖面尺寸的前提下,通过强化 工艺方法,抑制裂纹萌生,较大幅度地提高结构的疲 劳寿命(裂纹形成寿命和裂纹扩展寿命),是实现结构长寿命、高可靠性、低维修成本的重要手段之一。

近 20 年来,国内在抗疲劳断裂强化技术方面做 了大量的研究工作,取得了一定的成绩^[2,3]。但是, 文献中采用的冷挤孔边残余应力、干涉配合孔边预 应力分布图大多为有限元计算结果,缺乏足够实验

— 53 —

邢文珍

收稿日期:1999-09-14

^{*}航空科学基金资助,项目编号为96 B53 024

郭兰中,1964年出生,硕士,主要从事结构强度、疲劳及可靠性方面的研究工作 宇航材料工艺 2000年 第3期

数据的支持。本文作者并不怀疑文献计算方法的正确性,只是感到对于干涉强化这样的复杂问题,仅有理论计算是不够的。本文采用莫尔方法^[4]对拉伸载荷及压缩载荷作用下孔边预应力变化规律进行了比较研究,目的在于探讨载荷方式的影响效应。

2 试验

以莫尔法为试验手段,选用 100 线/mm 的正交 密栅云纹转贴软片,检测销钉打入后,施加单向拉 伸、压缩载荷时,拉伸、压缩载荷卸去后的三种状态 (以下简称干涉、加载、卸载)下,垂直于外载方向的 孔两边径向方位 (U场)上的径向应变 r和切向方 位 (V场)上的切向应变 。试件尺寸为 6 mm ×30 mm ×180 mm,中心孔径 6 mm,干涉量 3.1%,材料弹 性模量 E = 70 GPa,屈服极限 0.2 = 365 MPa,外加单 向拉伸、压缩应力均分别为 35% 0.2、45% 0.2、55% 0.2,对应的外载毛应力 (所加载荷与试件横截面面 积之比)分别为 129 MPa、164 MPa、207 MPa。本文共 做了 18 个试件的检测工作,限于篇幅仅将其中一个 试件的部分云纹照片示于图 1 中。

(a)干涉

(b)加载

(c)卸载

图 1 载荷水平为 35 % 0.2情况下 V 场平行云纹图 Fig. 1 Parallel moire of V field for load levels of 35 % 0.2

由于干涉和加载状态满足简单加载条件,而卸 载状态可视为以加载状态为基础进行反向加载的弹 性过程,故可用如下思路进行应力分量的推算^[5]:将 干涉配合过程和加外载过程视为单调加载过程,将 卸载过程视为以加载状态为初始状态的反向加载的 弹性单调过程,这样即可利用塑性全量小变形条件 下的伊留辛本构方程导出适用的应力转换表达式。 2.1 干涉和加载状态下孔边应力转换表达式

$$r = \frac{1}{A^{2} - B^{2}} (A_{r} - B_{r})$$

$$= \frac{1}{A^{2} - B^{2}} (A_{r} - B_{r})$$
(1)

式(1)中,,表示径向应变, 表示切向应变,,表 示径向应力, 表示切向应力。

$$A = \frac{(1 - 2_{0})}{3E} + \frac{2}{3}(1 +) \frac{-i}{i}$$
$$B = \frac{(1 - 2_{0})}{3E} - \frac{1}{3}(1 +) \frac{-i}{i}$$

- 54

在 $A \ B$ 中 i 表示等效应变, i 表示等效应力。 对于弹性情况, $_0 = \frac{1}{3}$, $= \frac{1}{3}$, $A = \frac{1}{E}$, $B = -\frac{1}{3E}$,则

$$r = \frac{E}{1 - 2} (r + 1)$$

$$= \frac{E}{1 - 2} (r + 1)$$

$$(2)$$

对于塑性情况, $_0 = \frac{1}{3}$, $= \frac{1}{2}$, 而式(1)中的 A、

B 分别为

$$A = \frac{1}{9E} + \frac{-i}{i}, B = \frac{1}{9E} - \frac{1}{2i}$$

将这一情况下的₀、、*A*、*B*代入(1)式中可得 塑性情况下的_r、 的计算公式。

对于由比例极限到屈服极限附近(大于屈服极 限)的拉伸曲线拐弯处,有

$$_{0} = \frac{1}{3}, = \frac{1}{2} \cdot (\frac{1}{3} + \frac{1}{2}) = 0.4167$$
$$A = \frac{1}{9E} + 0.9445 - \frac{i}{i}, B = \frac{1}{9E} - 0.4722 - \frac{i}{i}$$

宇航材料工艺 2000 年 第3期

将它们代入(1)式中即可计算这一情况下的,、 的计算公式。

在上述各式中,等效应变 ;用 Mises 屈服准则 计算,等效应力 ;可据;在单向拉伸曲线上查得。 2.2 卸载后孔边应力转换表达式

由于将卸载过程视为以加载状态为初始状态的 反向加载的弹性单调过程,因此卸载过程的应力增 量为

$$r = \frac{E}{1 - 2}(r + r)$$

$$= \frac{E}{1 - 2}(r + r)$$
(3)

其中, =13.

将式(3)的结果与加载状态下的应力叠加,就可 以得到卸载后的应力分量。图 2、图 3 分别为拉伸 组和压缩组载荷水平为 55 % 0.2的应力结果图。图 4~图 6 是在综合本文所获应力结果的基础上对其 所反映出的共同性状的定性描述。图中横坐标表示 干涉状态,纵坐标定性的表示应力的大小和正负。 至于本文其余情形下的应力结果图和应力比较图限 于篇幅不能一一列示,参见文献[6]。

图 3 应力曲线 Fig. 3 Stress curve 压缩组、干涉量 3.1%、载荷级 55% 0.2、试件厚度 6 mm。

3 试验结果分析

3.1 干涉状态应力分析

由图 2 和图 3 可以看出,在干涉状态孔边切向 及径向均承受压应力。这是由于在孔壁附近因销钉 的"扩张"作用材料晶粒及晶粒边界上的杂质被拉 长,从而使其外围弹性区产生拉应力,而外围弹性区 的"回复"作用将在孔壁附近材料中产生压应力。这 一压应力对疲劳裂纹的萌生具有一定的抑制作用, 并可使已存在的微观裂纹处于闭合状态或使裂纹张 宇航材料工艺 2000 年 第3期 开时的应力强度因子的最大值 Kmax减少。

3.2 加载状态应力分析

由图 2 及图 4、图 5 可见,加载状态下,在拉伸载 荷作用下,孔边切向应力 曲线相对于干涉状态呈 现上移趋势(即增正),增正的程度随载荷水平的增 大而增大。由表 1 可知,对应于各不同载荷级的切 向应力 的增量分别为 34 MPa、43 MPa、70 MPa,与 相应的外载毛应力(129 MPa、164 MPa、207 MPa)相比 较,应力集中的程度有较大的降低。由图 3 和图 6

— 55 —

可知,在压缩载荷作用下,孔边切向应力 曲线相 对于干涉状态呈现下移趋势(即增负),且下移(增 负)的程度随载荷水平的增大而增大(孔边应力增量 参见表1)^[6]。上述分析说明,拉伸载荷和压缩载荷 对干涉配合所产生的压应力场的影响不同。由于压 缩载荷作用下,孔边切向应力 曲线相对于干涉状 态呈现下移趋势,是否可以说干涉配合更适宜在压 缩载荷环境下工作,还必须进一步考察卸载状态的 情形。

表1 应力增量比较

Tab.1 Stress increment comparison

北京 35% 0.2 45% 0.2 55% 0.2 35% 0.2 45% 0.2 55 加計状本 24 42 70 28 43 7 7 28 42 7	0/
加载业本 24 42 70 28 42	70 0.2
加氧化化态 54 45 70 - 28 - 45	- 58
卸载状态 - 230 - 210 13 16 55	544

3.3 卸载状态应力分析

— 56 —

由图 2 及图 4、图 5 可见,当拉伸载荷卸去后,孔 边切向应力 的曲线下移(即增负),下移(增负)的 程度随载荷水平的增大而减小^[6],但当载荷水平达 到 55 % 0.2时,在孔边一个很小的范围内(约 0.1 mm),孔边切向应力 的曲线则上移(即增正)。可 以预计,当载荷水平继续增大时,卸载后的孔边切向 应力 曲线的上移(增正)程度也将随之而继续增 大。由图 3 和图 6 可知,当压缩载荷卸去后,孔边切 向应力 上移(即增正),且上移的程度随载荷水平 的增大而增大^[6],当载荷水平达到 55 % 0.2时,在距 孔边 2.5 mm 的范围内上移的程度已是很大了,可以 认为孔边干涉预应力场受到破坏(孔边应力增量参 见表 1)。上述分析表明,在压缩载荷作用下干涉预 应力场(压应力场)的稳定性较拉伸载荷作用下差, 从而说明干涉配合连接更适合在拉伸载荷环境下工 作,但载荷水平不可过大,如当载荷水平达到 55 % 0.2时,在孔边一个很小的范围内,孔边切向应力 的曲线已呈现出上移的趋势。

4 结论

拉伸载荷作用与压缩载荷作用情形相比较,干 涉配合连接更适合在中等及其以下的拉伸载荷环境 下工作。根据本文实验,这个限度可初步确定为 50% 0.2。若载荷水平超过这个限度,干涉配合连接 技术不宜采用。应该注意的是:若压载在拉载之后, 拉载卸去后的增负将被压载卸去后的增正所抵消, 其结果将破坏原有的干涉预应力场,不利于疲劳寿 命的提高。

参考文献

1 董鉴沪.对 2000 年国外飞机机械连接技术发展的预 测.见:航空部连接技术学术交流会论文.厦门,1987:161

2 中国航空科学研究院.飞机结构抗疲劳断裂强化设 计手册.航空工业出版社,1993:1~74

3 中国航空科学研究院.飞机结构抗疲劳断裂强化工艺手册.航空工业出版社,1993:36~57

4 曹起骧等.密栅云纹法原理及应用.清华大学出版 社,1983:10~98

5 邢文珍.干涉配合孔边应力及外载下应力变化量的 实验检测.西北工业大学学报,1996;(12):42~45

6 郭兰中.强化孔边应力在拉压大载下变化规律的实验研究.西北工业大学硕士论文,1999:22~66

高导磁铁铝合金 16Al 工艺研究

本成果研究 16Al 高导磁铁铝合金除具有高磁性能、高硬度、高电阻率、低损耗、低密度等特性外,还具有 抗冲击、抗辐射性能,磁性对应力不敏感也独具有特点。可用于长寿命磁头、惯导器件的传感器及核能技术 自控遥控等方面。

通过对热处理工艺、软化工艺及磷化工艺的研究,使其性能均已达到国外先进水平。

·李连清 ·

宇航材料工艺 2000年 第3期