PBT/N100黏合剂体系固化流变性能

任鑫靳鹏李杰李国平罗运军

(北京理工大学材料学院,北京 100081)

文 摘 为深入研究黏合剂3,3-双(叠氮甲基)氧丁环-四氢呋喃共聚醚(PBT)与固化剂多异氰酸酯N100 的固化反应过程,使用流变仪研究了PBT/N100黏合剂体系固化过程中的模量变化和凝胶化之前的黏度变化。 结果表明:PBT/N100黏合剂体系的等温固化过程遵循自催化动力学模型。根据模量随时间的变化,PBT/N100黏 合剂体系的固化过程可分为反应控制阶段、凝胶化阶段和扩散控制阶段。其中,反应控制阶段的黏度变化符合 双Arrhenius模型,计算得到该阶段的粘流活化能和反应活化能分别为36.271 kJ/mol和54.882 kJ/mol。通过Eyring 模型,计算出PBT/N100黏合剂体系固化过程的热力学参数ΔH和ΔS,分别为52.07 kJ/mol和-125.55 J/(mol·K), 由此基本确定,PBT/N100黏合剂体系比较理想的等温固化温度为60℃,固化时间约为160 h。

关键词 PBT/N100黏合剂体系,流变法,固化过程,模量,黏度

中图分类号:TJ55 DOI:10.12044/j.issn.1007-2330.2022.01.008

Cure Rheology Characteristics of PBT/N100 Binder System

REN Xin JIN Peng LI Jie LI Guoping LUO Yunjun (School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081)

Abstract In order to deeply understand the curing reaction process of 3, 3-bis (azidomethyl) oxetane/ tetrahydrofuran copolymer (PBT) binder and polyisocyanate curing agent (N100), the modulus changes during the entire isothermal curing process and the viscosity changes before gelation for PBT/N100 binder system was studied by using a rheometer. The results show that the entire isothermal curing process of PBT/N100 binder system follows the autocatalytic kinetic model. According to the change of modulus with curing time, the curing process of PBT/N100 binder system is divided into reaction-control stage, gelation stage and diffusion-control stage. Dual-Arrhenius model can be used to describe the changes of viscosity in the reaction- control stage. The activation energy for viscosity and the activation energy for reaction are 36. 271 kJ/mol and 54. 882 kJ/mol, respectively. The Eyring model is used to calculate the thermodynamic parameters ΔH and ΔS during the curing process, which are 52. 07 kJ/ mol and -125. 55 J/(mol·K), respectively. It is basically confirmed that the ideal isothermal curing temperature for PBT/N100 binder system is 60 °C, and the curing time is about 160 h.

Key words PBT/N100 binder system, Rheology, Curing process, Modulus, Viscosity

0 引言

3,3-双(叠氮甲基)氧丁环-四氢呋喃共聚醚 (PBT)黏合剂属于叠氮类含能黏合剂,它具有正生成 热高、玻璃化转变温度低、密度大、机械感度低以及 热稳定性好等优点^[1-2],符合固体推进剂高能、钝感、 低特征信号等要求,具有良好的发展前景。

黏合剂作为推进剂的骨架,其性能是固体推进 剂力学性能的核心。为提高PBT基推进剂的力学性 能,沈业炜等^[3]探究了中性键合剂的粒度、用量以及 固化网络交联分子量对PBT基推进剂高温力学性能 的影响,发现小粒径的中性键合剂有利于提高推进 剂的高温伸长率,当中性键合剂的用量不少于 0.08%时,推进剂的高温拉伸强度大于550 KPa,伸 长率大于40%。左海丽等^[4]探究了扩链剂种类和交 联参数对PBT弹性体微相分离和力学性能的影响, 结果表明在二元醇扩链的弹性体中,硬段含量约为 15%时,弹性体发生相对最大比例的微相分离,表现 出较佳的综合力学性能。周水平等^[5]分析比较了小

第一作者简介:任鑫,1993年出生,硕士研究生,主要从事固体推进剂粘结剂研究工作。E-mail:791224103@qq.com

收稿日期:2021-01-11

基金项目:基础产品创新计划火炸药科研专项(HZY2018001)

通信作者:李国平,1978年出生,教授,博士研究生导师,主要从事含能材料研究工作。E-mail:girlping3114@bit.edu.cn

分子交联剂和含能大分子多元醇交联剂对PBT高能 推进剂力学性能的影响,发现采用小分子交联剂的 PBT推进剂具有较高的拉伸强度和模量,不同的小分 子交联剂对PBT推进剂力学性能的影响相差不大, 常温拉伸强度为0.9~1.0 MPa,初始模量为1.18~ 1.3 MPa,而含大分子交联剂的PBT推进剂具有良好 的最大伸长率,最高可达103.9%。这些研究都是从 物质本身的角度出发来改善力学性能的,除此之外, 通过优化固化工艺也可以有效提高推进剂的力学性 能,这需要对推进剂的固化过程进行研究。目前研 究固化过程的常用方法有 FTIR 法^[6]和 DSC 法^[7], 如 TANVER 等^[8]使用 FTIR 法测定了 HTPB 固化过程中 特征基团的强度变化并计算出转化率,得到了HTPB/ IPDI体系固化反应的活化能为41.06 kJ/mol。王芮 等^[9]利用非等温 DSC 法得到聚丁二烯点击化学固化 反应的活化能为73.81 kJ/mol,指前因子为2.85×108 min⁻¹。然而,FTIR法对固化后期反应基团的微小变 化不敏感,DSC法无法测试固化体系中分子链缠结 等物理状态的变化。另外,这两种方法都无法测试 固化过程中工艺性能参数的变化。

流变法是通过监测黏合剂固化过程中的黏度或 模量变化来表征固化过程的。该方法克服了DSC法 和FTIR法研究固化过程的局限性,达到对固化过程 中发生的化学反应和物理作用同时测试的目的,还 可监测工艺性能参数的变化。唐汉祥等^[10]证明使用 动态流变法研究推进剂药浆的固化反应是可行的, 并得到了硝酸酯增塑聚醚推进剂在不同温度下固化 时的表观凝胶化时间和表观活化能。何伟等印利用 流变学等温测试方法研究了铝对GAP改性球形药固 化动力学的影响,发现加入铝后固化反应的表观活 化能增大,反应级数增加,指前因子减小。

N100是用水改性的六次甲基-1,6-二异氰酸 酯,是一种多异氰酸酯固化剂,其平均官能度大于 3.5,具有挥发性小、毒性低且反应能力适中等优点, 常用作固体推进剂的固化剂。为此,本文以T12为催 化剂,采用流变法首先研究PBT/N100黏合剂体系的 固化全过程,在此基础上研究PBT/N100黏合剂体系 凝胶化之前的黏度变化,拟为研究PBT/N100黏合剂 体系的固化过程、调控固化工艺提供参考。

1 实验

1.1 材料

3.3-(叠氮甲基)氧杂环丁烷(BAMO)-四氢呋喃 (THF)共聚醚(PBT): $\overline{M_n}$ =5 212 g/mol, [OH] =20.27 mgKOH/g,黎明化工研究院,使用前80℃真空除水 48 h;多异氰酸酯固化剂 N100: M = 744 g/mol, 异氰

酸根含量为5.43 mmol/g,黎明化工研究院;二月桂酸 二丁基锡(T12):北京化工厂,配成质量分数为0.5% 的癸二酸二辛酯(DOS)溶液;癸二酸二辛酯(DOS); 天津市光复精细化工研究院,分析纯。

1.2 实验仪器

HAKKE MARS Ⅱ型旋转流变仪,赛默飞世尔科 技(中国)有限公司,采用平行板夹具(直径为20 mm)。模量测试的条件为应变1.0%,频率1.0 Hz, 温度80℃;黏度测试的条件为剪切速率1.0 s⁻¹,温度 50、60、70和80℃。

1.3 实验方案

根据计算结果,按配比依次称量催化剂T12、固 化剂 N100 和黏合剂 PBT 于四氟烧杯中,室温下手动 搅拌均匀, [NCO]/[OH]为1.5。测试时,将适量反应 物溶液滴在平行板下夹具上,然后使上夹具下降至 距下夹具1.2 mm的位置,在系统自带的软件中输入 测试参数,开始实验,记录固化过程中不同时刻黏合 剂体系的模量或黏度。

2 结果与讨论

2.1 PBT/N100 黏合剂体系固化过程的模量变化

图 1 为 PBT/N100 黏合剂体系在 80 ℃固化时储 能模量 G '和损耗模量 G "随固化时间的变化。

图 1 PBT/N100 黏合剂体系 80 ℃固化时 G ′ 和 G ″ 随时间的 变化

Fig. 1 Changes of *G* ' and *G* " with time when PBT/N100 binder system is cured at 80 °C

由图1可以看出、PBT/N100黏合剂体系的G'和 G"随时间变化的曲线呈S形。在初始阶段(A部 分),测得的储能模量G'数据分散,这是由于此时体 系的G'小于流变仪的测量下限值^[12]。固化反应进 行约30 min后,储能模量G'和损耗模量G'都随时 间缓慢增大,G'小于G",这是由于此时体系仍处于 黏流态,黏性占主导地位,体系发生形变时耗散的能 量大于储存的能量,因此G'小于G",此阶段为反 应控制阶段。在反应中期(B部分),G'的增长速度 大于G",G'逐渐增加至和G"相等并超过G",这 是由于黏合剂体系的交联网络逐渐形成,体系状态

— 59 —

宇航材料工艺 http://www.yhclgy.com 2022年 第1期

由黏流态转变为黏弹态,弹性逐渐占主导地位,体系 发生形变时储存的能量大于损耗的能量,此阶段为 凝胶化阶段;反应后期(C部分),G'和G"增速变缓 并趋于稳定,这是由于此时一OH和一NCO的浓度较 低,体系状态由弹性凝胶转变为弹性胶片,反应物链 段的运动受到极大限制,体系交联网络逐渐完善,固 化反应结束,此阶段为扩散控制阶段。且从图1可以 看出,在80℃下,固化反应进行约40h,G'和G"的 变化都趋于稳定,表明PBT与N100的固化反应达到 固化终点。

2.2 PBT/N100 黏合剂体系的固化动力学模型

为深入理解PBT/N100黏合剂体系的固化过程, 需建立动力学模型对固化过程进行分析。一般而 言,化学反应动力学方程可表示为:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = k(T)f(\alpha) \tag{1}$$

式中,*k*(*T*)为反应速率常数,是温度的函数,*f*(*α*)为 模型函数,和反应机理有关,*α*为反应程度。

使用流变学方法研究固化,可通过反应过程中 某一时刻增加的储能模量与整个反应过程增加的储 能模量的比值来表征反应程度α,如方程(2)所示:

$$\alpha = \frac{G'_{t} - G'_{0}}{G'_{\infty} - G'_{0}}$$
(2)

式中, G_0 '为反应开始时的储能模量; G_t '为t时刻的储能模量; G_t '为t时刻的储能模量; G_s '为固化完成时的储能模量。

根据方程(2),可将*G* ′转变为α,将α对时间*t*求导,得到反应速率和反应程度之间的关系,如图2中的方实点所示。

由图 2 中的方实点可知, PBT/N100 黏合剂体系的 固化反应速率在反应进行到某一程度时达到最大, 这 和自催化动力学模型的特征相符^[13]。因此, 采用自催 化动力学模型对实验数据进行拟合, 方程(1)可改写为:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = k(T)\alpha^m (1-\alpha)^n \tag{3}$$

式中,m和n都为模型参数。

— 60 —

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = K\alpha^m (1 - \alpha)^n \tag{4}$$

利用方程(4)拟合($d\alpha/dt$)- α 数据,结果如图2中的曲线所示。可以看出,模型拟合曲线和实验数据吻合较好(r = 0.9991),说明PBT/N100黏合剂体系的固化过程符合自催化模型,固化动力学方程为:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = 0.01005 \cdot \alpha^{0.5356} (1 - \alpha)^{2.038}$$
(5)

2.3 PBT/N100 黏合剂体系固化过程的黏度变化

黏度反映了黏合剂体系的流动性,影响推进剂 的成型加工工艺。图3为PBT/N100黏合剂体系在 80℃固化过程中的黏度变化曲线。

图 3 PBT/N100 黏合剂体系 80 ℃固化时的黏度曲线 Fig. 3 Viscosity curve of the PBT/N100 binder system at 80 ℃

从图3可以看出,反应前期体系的黏度增加缓 慢,对应图1中的A阶段。当反应进行到一定程度 时,黏度迅速增大,黏度曲线出现明显的过渡阶段, 这是由于此时黏合剂体系开始形成无线交联网络, 发生凝胶化反应,对应图1中的B阶段。之后黏度继 续增大,黏度曲线发生振荡,对应图1中的C阶段。 黏度曲线之所以发生振荡,是由于旋转流变仪测试 黏度是通过上下夹具的旋转使样品形成层流来实现 的,而在C阶段黏合剂体系交联网络逐渐完善,样品 失去流动性,无法形成层流,因此使用流变仪无法测 量体系黏度,黏度曲线出现振荡。在该条曲线的最 后,出现黏度急剧下降的现象,这是由于此时结束了 实验,流变仪的上下夹具分开导致的。

2.4 PBT/N100 黏合剂体系的化学流变模型

固化过程中,体系的黏度受温度和反应程度的 共同影响。图4显示了PBT/N100黏合剂体系在不同 温度下固化时的黏度变化。由图4可知,温度越高, 黏度曲线出现转折的时间越短,说明升高温度可以 加快固化反应。不同温度下固化时,体系的黏度变 化规律一致,都是先缓慢增加,然后出现过渡阶段, 接着黏度迅速增大,固化后期黏度曲线发生振荡,说 明在不同温度下固化时,黏合剂体系均经历了反应

宇航材料工艺 http://www.yhclgy.com 2022年 第1期

图 4 PBT/N100 黏合剂体系在不同温度下固化的黏度曲线 Fig. 4 Viscosity curves of the PBT/N100 binder system at different cure temperature

控制阶段、凝胶化阶段和扩散控制阶段。

当固化反应进行到凝胶化阶段,体系的流动性 变差,样品性质已不适合成型加工^[14]。因此,有必要 深入研究 PBT/N100 黏合剂体系凝胶化之前的黏度 变化,为此需要首先确定凝胶化阶段的起点。

由上文分析可知,在固化过程的不同阶段,黏度 的增加速率不同,从数学意义上来说,即黏度对时间 的导数不同。据此,使用Origin软件将黏度对时间求 导,即可得到凝胶化阶段的起点,结果如表1所示。

表1 PBT/N100 黏合剂体系在不同温度下凝胶化阶段起点的时间和黏度

Tab. 1Time and viscosity at the starting point of gelation
stage for the PBT/N100 binder system

t/°C	t/min	$\eta/\mathrm{Pa}\cdot\mathrm{s}$
50	195.0	81.30
60	110.0	46.85
70	60.00	31.90
80	30.00	17.70

由表1可知,温度越高,体系凝胶化起点的黏度 越低,这是由于在凝胶化初始阶段,虽然黏合剂体系 开始形成无线网络,但由化学反应产生的黏度增加 还不足以抵消热活化产生的黏度降低,即温度对体 系黏度的影响仍占主导地位,因此凝胶化阶段起点 的黏度随温度升高而降低。

确定了凝胶化阶段的起点,即可建立体系凝胶 化之前的化学流变模型。黏合剂体系固化过程中的 黏度变化受温度和反应时间的共同影响。一般表征 黏度一温度一时间的关系有两种模型:一是与绝对 反应速率理论相联系的双Arrhenius模型;二是与自 由体积理论相联系的WLF模型^[15]。其中,双 Arrhenius模型的适用性较广,它可以在不考虑固化 动力学的条件下预测体系的黏度变化,其表达式如 方程(6)^[16]所示:

宇航材料工艺 http://www.yhclgy.com 2022年 第1期

$$\frac{\eta_t}{\eta_0} = \exp(Kt) \tag{6}$$

式中, η_i 为黏合剂体系在t时刻的黏度, η_0 为黏合剂体 系的初始黏度,(η_i/η_0)为黏合剂体系的相对黏度,K为反应速率常数,t为反应时间。

 η_0 和*K*都符合 Arrhenius 方程,可分别表示为方程(7)和方程(8):

$$\eta_0 = \eta_{\infty} \exp(\frac{E_{\eta}}{\mathbf{R}T}) \tag{7}$$

$$K = K_{\infty} \exp(-\frac{E_a}{\mathbf{R}T}) \tag{8}$$

式中, η_x 和 K_x 均为指前系数, E_η 为粘流活化能, E_a 为固化反应活化能,R为理想气体常数,T为反应温度。

方程(6)通常可以较好地描述体系凝胶化之前的黏度变化,但当接近凝胶点时,体系黏度急剧增大,使用方程(6)预测黏度的误差也会增大,因此引入与温度相关的系数*A*^[17],此时方程(6)可改写为:

$$\frac{\eta_t}{\eta_0} = A \exp(Kt) \tag{9}$$

将系数A定义为:

$$A = k_1 \exp(\frac{k_2}{T}) \tag{10}$$

式中,k1和k2均为模型参数。

图5显示了 $\ln\eta_0$ 对1/T的拟合曲线,可以看出,拟 合曲线与实验数据吻合较好($r^2=0.997~87$), $\ln\eta_0$ 与 1/T的关系可表示为:

$$\ln\eta_0 = -10.52 + \frac{4363}{T} \tag{11}$$

对式(11)进行变换,可得到式(7)的具体表达式:

$$\eta_0 = 2.704 \times 10^{-5} \cdot \exp(\frac{4363}{T})$$
 (12)

图6显示了50、60、70和80℃下黏合剂体系的相 对黏度(η_i/η_0)与时间t关系,采用最小二乘法对数据 进行拟合,可得到不同温度下的模型参数A和K,结 果列于表2中。由表2可以看出,随着固化温度的升 高,反应速率常数K逐渐增大,这说明升高温度会导 致固化反应速率加快。另外,结合表1中不同温度下

-61 -

图 6 PBT/N100 黏合剂体系不同温度下的相对黏度曲线 Fig. 6 Relative viscosity curves of the PBT/N100 binder system at different temperature

反应体系到达凝胶化的时间以及推进剂生产过程中 对适用期的要求和安全因素等,PBT/N100黏合剂体 系比较理想的等温固化温度为60℃。由于在80℃ 下大约需要40h反应体系可以达到固化终点,根据 范特霍夫规则,在60℃下固化,至少需要160h反应 体系才可达到固化终点。

由图7中的 $\ln A \ln K$ 对1/T的拟合曲线可以看出, $\ln A \ln K = 1/T$ 都有良好的线性关系,根据拟合直线的斜率和截距,可求出 $K_x E_a k_1 \pi k_2$,代入方程(8)和(10),得到 $K \pi A$ 的表达式,如方程(13)和(14)所示:

$$K = 5.296 \times 10^6 \cdot \exp(\frac{-6601}{T})$$
 (13)

$$A = 0.2390 \cdot \exp(\frac{421.7}{T})$$
 (14)

表 2 不同温度下模型参数 $A \rightarrow K$ 的值 Tab. 2 Parameter values of A and K at different

temperatures				
t/°C	A/10 ⁻²	<i>K</i> /10 ⁻²		
50	87.32	0.731		
60	85.28	1.243		
70	82.16	2.409		
80	78 10	4 035		

将方程(12)、(13)和(14)代入方程(9),可求出 凝胶化之前体系黏度随时间变化的表达式:

图 8 双 Arrhenius模型曲线与实验数据的比较 Fig. 8 Comparison of the dual-Arrhenius model curve and experimental data

为验证模型的可靠性,将模型曲线与实验数据 进行比较,如图8所示。

可以看出,模型曲线整体上与实验数据吻合较 好,但在温度较低时,存在一定偏差,这是因为双 宇航材料工艺 http://www.yhclgy.com 2022年 第1期 Arrhenius 模型没有考虑固化过程中的放热对固化速率的影响。

2.5 PBT/N100 黏合剂体系固化过程的热力学分析

根据双Arrhenius模型中的反应速率常数K,使用Eyring模型^[18-19],可计算出PBT/N100黏合剂体系固化过程的热力学参数活化焓(ΔH)和活化熵(ΔS)。Eyring模型的表达式如方程(16)所示:

$$\ln\frac{K}{T} = -\frac{\Delta H}{RT} + \frac{\Delta S}{R} + \ln\frac{R}{Nh}$$
(16)

式中,K为反应速率常数,由双Arrhenius模型得出, ΔS 为活化熵, ΔH 为活化焓,T为反应温度,R为理想 气体常数,N为Avogadro常数,h为Planck常数。

根据表(2)中的数据和方程(16),由 ln(*K*/*T*)对 1/*T*作图,结果如图9所示。

图 9 PBT/N100 黏合剂体系 ln(K/T)与 1/T 的关系图 Fig. 9 Relation diagram between ln(K/T) and 1/T of the PBT/ N100 binder system

Fig. 10 The association effect during the PBT and N100 curing reaction process

从图9可以看出, ln(*K*/*T*)与1/*T*之间存在良好的 线性关系,根据拟合直线的斜率和截距,可求出Δ*H* 和Δ*S*分别为52.07 kJ/mol和-125.55 J/(mol·K)。过 渡态理论认为,活化熵Δ*S*是反应体系无序度的体 现^[20],PBT/N100 黏合剂体系的Δ*S*为负值,说明固化 反应中存在缔和作用,主要包括两部分:一是PBT和 N100发生固化反应形成聚氨酯的过程中,PBT中— OH电子云密度大的O进攻N100中—NCO的亲核中 心C,使—NCO中C的电子云密度降低,发生缔合作 用,其示意图如图10所示;二是聚氨酯中的氢键作 用,PBT和N100反应生成聚醚型聚氨酯,其中的氢键 主要包括氨基—羰基氢键和氨基—醚基氢键,其示 意图如图11所示。

3 结论

(1)PBT/N100 黏合剂体系固化过程中模量随时间的变化呈S形,固化过程符合自催化动力学模型,反应过程可分为三个阶段:反应控制阶段、凝胶化阶段和扩散控制阶段。

(2)温度越高,体系凝胶化起点的黏度越低,说 明在凝胶化初始阶段,由化学反应产生的黏度增加 还不足以抵消热活化产生的黏度降低,温度对体系 黏度的影响仍占主导地位。

(3)凝胶化之前,PBT/N100黏合剂体系固化过程 中的黏度变化符合双Arrhenius模型,模型分析结果 和实验数据具有一致性,为预估不同温度下的黏度 变化提供了依据。

(4)使用 Eyring模型计算出 PBT/N100 黏合剂体
系 固 化 过 程 的 Δ H 和 Δ S 分 别 为 52.07 kJ/mol 和 –
125.55 J·(mol·K)。

(5)综合考虑固化反应速率、推进剂制备的适用 期以及安全因素等,PBT/N100黏合剂体系比较理想 的等温固化温度为60℃,固化时间约为160 h。

参考文献

[1] 吴芳,熊中年,燕为光,等. Bu-NENA/PBT 推进剂安 全性能[J]. 固体火箭技术,2019,42(4):483-487.

WU Fang, XIONG Zhongnian, YAN Weiguang, et al. Safety properties of Bu-NENA/PBT propellants [J]. Journal of Solid Rocket Technology, 2019, 42(4): 483-487.

[2] 李苗苗,孙庆锋,干效东,等. PBT/增塑剂共混物相 容性的介观动力学模拟[J]. 上海航天,2015,32(4):63-67.

LI Miaomiao, SUN Qingfeng, GAN Xiaodong, et al. Mesoscopic dynamic simulation on compatibility of pbt/ plasticizers blends [J]. Aerospace Shanghai, 2015, 32 (4) : 63-67.

[3] 沈业炜, 仉玉成, 童丽伦. PBT 钝感高能推进剂高温 力学性能调节技术研究[J]. 推进技术, 2018, 39(11): 2595-2600.

SHEN Yewei, ZHANG Yucheng, TONG Lilun. Study on — 63 — adjustment technology for high temperature mechanical properties of PBT insensitive high energy propellant [J]. Journal of Propulsion Technology, 2018, 39(11): 2595-2600.

[4] 左海丽, 詹国柱, 楼阳, 等. PBT 弹性体微相分离及对 其力学性能的影响研究 [J]. 上海航天, 2018, 35(4): 134-141.

ZUO Haili, ZHAN Guozhu, LOU Yang, et al. Effects of microphase separation on mechanical properties of PBT elastomers[J]. Aerospace Shanghai, 2018, 35(4): 134-141.

[5]周水平,吴芳,唐根,等.含能交联剂对PBT高能推进剂力学性能的影响[J].化学推进剂与高分子材料,2016,14(4):54-59.

ZHOU Shuiping, WU Fang, TANG Gen, et al. Influence of energetic crosslinking agents on mechanical performance of PBT-based high energy propellants [J]. Chemical Propellants & Polymeric Materials, 2016, 14(4): 54-59.

[6] RECALDE I B, RECALDE D, GARCÍA-LOPERA R, et al. FTIR isothermal cure kinetics and morphology of dicyanate ester resin/polysulfone blends [J]. European Polymer Journal, 2005, 41(11): 2635-2643.

[7] BANDEIRA C F, PEREIRA A C, BOTELHO E C, et al. Benzoxazine resin and their nanostructured composites cure kinetic by DSC [J]. Journal of Materials Research, 2013, 28 (22): 3094–3099.

[8] TANVER A, HUANG M H, LUO Y J, et al. Chemical kinetic studies on polyurethane formation of GAP and HTPB with IPDI by using In-situ FT-IR spectroscopy [J]. Advanced Materials Research, 2014, 1061–1062: 337–341.

[9] 王芮,李晓萌,王晓青,等. 非等温 DSC 法研究聚丁 二烯点击化学固化动力学[J]. 火炸药学报,2019,42(4): 328-334.

WANG Rui, LI Xiaomeng, WANG Xiaoqing, et al. Study on the click chemical curing reaction kinetics of polybutadiene triazole system by non-isothermal DSC method [J]. Chinese Journal of Explosive & Propellants, 2019, 42(4): 328-334.

[10] 唐汉祥,吴倩,陈江. 硝酸酯增塑聚醚推进剂药浆 固化反应研究[J]. 推进技术,2003(2):175-178.

TANG Hanxiang, WU Qian, CHEN Jiang. Curing characteristics of NEPE composite solid propellant slurry [J]. Journal of Propulsion Technology, 2003(2): 175–178.

[11] 何伟,何利明,马中亮,等.利用流变学等温测试方 法研究铝对聚叠氮缩水甘油醚改性球形药固化的影响[J]. 兵工学报,2016,37(6):1023-1029. HE Wei, HE Liming, MA Zhongliang, et al. Research on effect of Al on curing property of GAP spherical propellant by rheological isothermal measuring method [J]. Acta ArmamentarII, 2016, 37(6): 1023-1029.

[12] LUCIO B, LUIS DLFJ. Rheological cure characterization of an advanced functional polyurethane [J]. Thermochimica Acta, 2014, 596: 6–13.

[13] WEI H, HE L, MA Z, et al. The kinetic and viscosity analysis of glycidyl azide polymer spherical propellant [J]. Journal of Thermal Analysis & Calorimetry, 2016, 124(2):1–8.

[14] DANDAN Z, RUMIN W, SHAMEEL F, et al. Chemorheological behaviors of TDE-85 toughened by low viscosity liquid epoxy for RTM process [J]. Polymer Testing, 2018, 70: 310-319.

[15] 张明.通用航空环氧树脂的固化和相行为研究 [D].北京:北京航空材料研究院, 2006.

ZHANG Ming. Study on curing and phase behavior of general aviation epoxy resin[D]. Beijing: AECC Bejing Institute of Aeronautical Materials, 2006.

[16] ROLLER M B. Rheology of curing thermosets: A review [J]. Polymer Engineering & Science, 1986, 26(6): 432-440.

[17] 张明, 安学锋, 唐邦铭, 等. 双组分环氧树脂体系 化学流变特性的研究及 TTT-η 图的绘制[C]// 中国科协优秀 博士生学术年会, 西安交通大学, 2006.

ZHANG Ming, AN Xuefeng, TANG Bangming, et al. Study on the chemical rheological properties of two-component epoxy resin system and drawing of TTT- η diagram [C]//Annual meeting of outstanding doctoral students of China Association for science and technology, Xi'an Jiaotong University, 2006.

[18] CHAI T, LIU Y C, MA H, et al. Rheokinetic analysis on the curing process of HTPB-DOA- MDI binder system [J]. IOP Conference Series: Materials Science and Engineering, 2016, 137: 12069.

[19] 贾志宏, 仇盛, 陈昊轩, 等. 镁铝合金熔体黏度测量 及模型分析[J]. 铸造技术, 2018, 39(8): 1686-1688, 1692.

JIA Zhihong, QIU Sheng, CHEN Haoxuan, et al. Viscosity measurement and modeling for melted Mg-Al alloys [J]. Foundry Technology, 2018, 39(8): 1686-1688.

[20] YANG P F, YU Y H, WANG S P, et al. Kinetic studies of isophorone diisocyanate-polyether polymerization with in situ FT-IR[J]. International Journal of Polymer Analysis & Characterization, 2011, 16(8): 584–590.