变角度铺丝构件内嵌缺陷精确定位算法

钱金源1 赵筱彤2 王小平1 张乐恩1

(1 南京航空航天大学机电学院,南京 210016)(2 南京航空航天大学电子信息工程学院,南京 210016)

文 摘 采用自动纤维铺放技术生产变角度铺丝构件时,在通过平移参考路径方法获得完整铺层过程中 剪丝操作将导致构件中产生间隙、重叠形式的内嵌缺陷。将参考路径设计为更具通用性和设计自由度的B样 条曲线。针对开边柱面铺丝构件,通过延长参考路径、丝束等距、丝带平移、丝束剪断、缺陷定位步骤,提出了 不同剪断策略下的内嵌缺陷精确定位算法,该算法适用于任意覆盖参数。最后开发了相应Matlab程序验证算 法的有效性,并可视化铺丝构件中内嵌缺陷的分布情况。结果表明算法可以精确确定不同覆盖参数下内嵌缺 陷的位置,可为后续有限元精细模型建立提供理论依据。

关键词 自动纤维铺放,内嵌缺陷,间隙,重叠,丝束剪断 中图分类号:TP391.9 DOI:10.12044/j.issn.1007-2330.2021.05.008

An Algorithm for Accurate Location of Embedded Defects in Variable Angle Fiber Placement Component

QIAN Jinyuan¹ ZHAO Xiaotong² WANG Xiaoping¹ ZHANG Leen¹

(1 College of Mechanical and Electrical Engineering, NUAA, Nanjing 210016)

(2 College of Electronics and Information Engineering, NUAA, Nanjing 210016)

Abstract During the manufacture of variable angle component using automatic fiber placement technology, a complete ply can be obtained by shifting the reference course where cutting operation gives rise to embedded defects in the form of gap and/or overlap emerging in the component. The reference path is designed based on B-spline curve with more generality and design freedom. An algorithm for capturing the accurate location of embedded defects under different fiber-cutting tactics, including the steps of extending the reference path, tow offset, course shifting, tow drop and defect location, is put forward for the open-contoured cylinder component, which is applicable to any coverage parameters. Finally, a Matlab program is developed to verify the effectiveness of the algorithm and visualize the distribution of embedded defects for different coverage parameters accurately and provide a theoretical basis for the subsequent fine finite element modeling.

Key words Automatic fiber placement, Embedded defect, Gap, Overlap, Tow drop

0 引言

先进复合材料由于其固有轻质优势,在航空航 天、汽车、风电等领域的应用愈发广泛,采用高占比 轻质复合材料的飞机可以实现整体减重20%~30%, 节能可达18%,获得高成本效益^[1-2]。近年来,自动纤 维铺放(AFP)技术相较于其他传统铺放技术在复合 材料构件生产方面已稳步取得优势地位^[3]。自动纤 维铺放技术允许层合板内纤维以曲线形式铺放使之 具有变刚度特性,称为变刚度或变角度层合板 (VSL)^[4],但是在变角度层合板生产中,采用丝束平 移方法会导致相邻丝束间产生局部内嵌缺陷,通常 表现为间隙(gap)或重叠(overlap),使用AFP系统中 的丝束剪断与重送功能可以减少缺陷面积,但无法 避免缺陷生成,最终在单层中产生一系列楔形的

收稿日期:2020-12-09

基金项目:国家自然科学基金资助项目(NO. 51575266, NO. 52075258)

第一作者简介:钱金源,1996年出生,硕士研究生,主要从事复合材料自动纤维铺放技术、CAD算法等方面的研究工作。E-mail: qianjinyuan14@ nuaa. edu. cn

通信作者:王小平,1964年出生,教授,博士生导师,主要从事复合材料自动纤维铺放技术、数字化设计制造、计算机图形学等研究工作。E-mail: levine@ nuaa.edu.cn

缺陷[5-6]。

国内外对于内嵌缺陷已经开展了一定研究,其 研究手段包括力学实验与有限元仿真。CROFT^[7]通 过实验说明铺层内部间隙和重叠缺陷会致使层压板 的抗压强度降低5%~27%。李韦清^[8]通过实验探讨 含缺陷定角度层合板成型方式对拉伸性能的影响。 丰亮宽^[9]则在定角度试件中通过设置不同的内嵌缺 陷角度分析缺陷角度对试件力学性能的影响。 FAYAZBAKHSH^[10]和NIK^[11]借助有限元仿真模拟间 隙和重叠的影响,仿真结果说明重叠会一定程度上 提高面内刚度与屈曲载荷,而缺陷通常会降低二者。 MAROUENE^[12]则结合实验与有限元仿真探究间隙 与重叠缺陷对变刚度层合板屈曲特性的影响。

对变角度构件开展有限元分析时,通常以不考 虑内嵌缺陷的理想铺层简化建模^[13-14]。若考虑内嵌 缺陷的实际影响,则内嵌缺陷的精确定位算法及几 何仿真是后续有限元仿真十分关键且不可获取的前 处理过程。BLOM^[5]和FAYAZBAKHSH^[10]给出了采 用等曲率路径作为参考路径的层合板的内嵌缺陷定 位算法,该设定下相邻丝束关系便于确定。Mishra^[6] 则采用均质化方法,显著提高了前处理计算效率。 安鲁陵^[15]提出了一种丝束裁剪求取算法对丝束重叠 程度进行控制,基于此宋桂林^[16]给出了规则回转体 丝束增减方法及内嵌缺陷面积的近似估算方法。

目前关于内嵌缺陷几何定位算法的研究较为局限,大都以层合板为实验或仿真对象^[4-13],且为便于 缺陷定位自动纤维铺放的参考路径大都采用等曲率 路径方式铺放^[5-6,10-12],此外,仅针对覆盖参数取为 0%或100%^[6]两种特殊情况^[5,10,12]给出定位方法。本 文将层合板构件拓宽至变角度开边柱面铺丝构件, 将铺放的参考路径设为更具通用性与设计自由度的 B样条曲线,并给出内嵌缺陷在任意覆盖参数下的精 确定位算法,最终开发Matlab程序验证算法并可视 化内嵌缺陷的真实分布情况。

1 开边柱面铺丝构件参考路径

开边柱面铺丝构件作为直纹面的一种特例,其 参数形式可表达为式(1),如图1所示。

$$S(u,v) = a(u) + vI_0 \tag{1}$$

式中, $\mathbf{a}(u)$ 为导线, \mathbf{I}_0 为直母线单位向量。

开边柱面可以与平面之间建立保长对应和保角 对应,设平面为*P*(*ũ*,*õ*)且构成正交坐标网,则柱面*S* (*u*,*v*)展为该平面的参数变换关系由式(2)给出,其 逆过程由式(3)给出。

$$\tilde{u} = \tilde{u}(u) = \iint \boldsymbol{b}'(u) \, \big| \, \mathrm{d}u, \qquad \tilde{v} = v - \boldsymbol{\lambda}(u) \quad (2)$$

宇航材料工艺 http://www.yhclgy.com 2021年 第5期

Fig. 1 Open-contoured cylinder component

$$u = u(\tilde{u}) = \int \frac{1}{|\boldsymbol{b}'(u)|} d\tilde{u}, \qquad v = \tilde{v} + \lambda(u) \quad (3)$$

式中,b(u)为按变换 $b(u)=a(u)+\lambda(u)\cdot l_0$ 得到的导线,且满足 $b'(u)\cdot l_0=0, |b'(u)|≠0$ 。

在铺丝构件上铺放纤维丝束时,首先需设计参 考路径,然后将参考路径偏移给定的距离,重复该步 骤以铺满整个单层。由于开边柱面与平面间具有保 长变换关系,可以先在平面内设计参考路径,再通过 式(3)变换至对应柱面上。为获得纤维角度连续变 化的铺层,参考路径采用二次B样条曲线进行设计, 其优点在于路径的首末端点就是控制多边形的首末 顶点且路径与控制多边形在端点处相切。若给定初 始角度 θ_1 、终止角度 θ_2 、形状参数 μ 、路径投影长度*pro* 及控制顶点中任意一点,则控制多边形其余顶点可 按式(4)求解。可得式(5)的B样条曲线,如图 2 所示。

图 2 二次 B 样条曲线 Fig. 2 Quadratic B-spline curve

$$\begin{cases} (\boldsymbol{V}_2 - \boldsymbol{V}_0) \cdot \boldsymbol{l}_r = pro \\ \boldsymbol{\theta}_1 = \arccos \frac{(\boldsymbol{V}_1 - \boldsymbol{V}_0) \cdot \boldsymbol{l}_r}{|\boldsymbol{V}_1 - \boldsymbol{V}_0|} \\ \boldsymbol{\theta}_2 = \arccos \frac{(\boldsymbol{V}_2 - \boldsymbol{V}_1) \cdot \boldsymbol{l}_r}{|\boldsymbol{V}_2 - \boldsymbol{V}_1|} \\ \boldsymbol{\mu} = \frac{(\boldsymbol{V}_1 - \boldsymbol{V}_0) \cdot \boldsymbol{l}_r}{pro} \end{cases}$$
(4)

式中,**V**₀、**V**₁、**V**₂为控制顶点;**l**,为平面内参考路径纤维 — 73 — 角度的参考方向。

$$p(t) = \sum_{i=0}^{2} V_i N_{i,2}(t), \ t \in [0,0,0,1,1,1]$$
(5)

求得控制顶点后,可以根据德布尔算法^[17]求得 参考路径任意点的切矢p'(t),纤维铺放角度按式(6) 求解,式(6)与 θ_1 、 θ_2 、 μ 隐式相关,形状参数 μ 过大或 过小都将使路径表现得更直,如图3所示。

$$\varphi = \arccos \frac{\mathbf{p}'(t) \cdot \mathbf{l}_r}{|\mathbf{p}'(t)|} \tag{6}$$

由于B样条曲线具有局部性质,通过增加新的 控制顶点延长参考路径并不会影响已经设计好的路 径,设计更为自由且各部分彼此独立,若参考路径包 含m个部分,则控制顶点可按式(7)计算,重复顶点 不重复计入,共计2m+1个,新的节点矢量按弦长参 数化方法^[17]确定,参考路径如式(8)所示。为了获得 路径的G'连续性,新的控制多边形需要与原控制多 边形在公共点彼此相切。因此,基于二次B样条曲 线参考路径生成的单层铺层可表示为< $\theta_{1,1}(\mu_1)\theta_{1,2}$ (μ_2) $\theta_{2,2}$...(μ_n) $\theta_{n,2}$ >,若参考路径只含有两部分且两部 分中心对称,则可简化表示为< $\theta_{1,2}(\mu_2)\theta_{2,2}$ 。通过平 移法可得到不考虑内嵌缺陷的理想铺层,变换至开 边柱面铺丝构件的对称理想铺层如图4所示。

图4 ±<10(0.6)50)>理想铺层 Fig.4 ±<10(0.6)50)>Ideal ply-up

$$\begin{cases} (V_{k,2} - V_{k,0}) \cdot l_r = pro_k \\ \theta_{k,1} = \arccos \frac{(V_{k,1} - V_{k,0}) \cdot l_r}{|V_{k,1} - V_{k,0}|} \\ \theta_{k,2} = \arccos \frac{(V_{k,2} - V_{k,1}) \cdot l_r}{|V_{k,2} - V_{k,1}|}, \theta_{k+1,1} = \theta_{k,2}, V_{k+1,0} = V_{k,2} \\ \mu_k = \frac{(V_{k,1} - V_{k,0}) \cdot l_r}{pro_k} \end{cases}$$
(7)

$$\boldsymbol{p}(t) = \sum_{i=0}^{2m} \boldsymbol{V}_i N_{i,2}(t), \quad \boldsymbol{V}_i = \boldsymbol{V}_{[i/2], i \bmod 2}, \quad t \in \boldsymbol{N} = \\ \begin{bmatrix} 0, 0, 0, n_1, n_1, \dots, n_{m-1}, n_{m-1}, 1, 1, 1 \end{bmatrix}$$
(8)

式中,N为按弦长参数化方法得到的节点矢量。

2 内嵌缺陷定位算法

在纤维自动铺放过程中,每次在铺丝构件上铺 放的纤维复合材料包含若干根单根丝束(tow),这些 单根丝束组成一丝带(course),如图5所示。

Fig. 5 Shifting of courses

丝带内丝束数(tow number)及丝束宽度(tow width)为生产参数,二者乘积为丝带宽度(course width),若不考虑丝束褶皱,则丝带宽度在铺放过程中被认为是定值。从图5中发现丝束平移法实际为 丝带的整体平移而不仅是参考路径的平移,因而存 在未能覆盖的区域,同时相邻丝带之间出现较大面 积的重叠,借助自动铺丝技术中的剪丝与重送功能 可使缺陷的最大宽度减小为单根丝束的宽度,这将 最终导致单层中内嵌缺陷的产生。

内嵌缺陷的精确定位算法流程图如图6所示,对 于每个单层,主要思路是首先延长参考路径使丝带 内所有丝束均能够抵达构件边界,其次通过等距方 法求取丝带内所有丝束的轨迹,然后对丝带进行平 移以铺满整个铺丝构件,之后采取不同策略对丝束 进行剪断并计算相应剪断点,最终实现内嵌缺陷的 精确定位。

— 74 —

Fig. 6 Flow chart of location algorithm of embedded defects

2.1 参考路径延长

所设计的B样条参考路径具有局部性质,其延 长部分仍可按式(7)计算而不影响延长前的路径,参 考路径需要延长直至相应丝带最外侧丝束抵达构件 边界,需满足条件(9),该条件下延长部分的终止角 度小于初始角度,因而不会超过先前路径的纤维角 度范围。延长后参考路径的节点矢量仍按弦长参数 化确定。

$$\begin{cases} pro_{k} = \frac{cw}{2} \cdot \sin\theta_{k,2} \\ \theta_{k,2} = -0.1(\theta_{k,1} - \theta_{k-1,1}) + \theta_{k,1} \\ \mu_{k} = \frac{\cos\theta_{k,1}}{\cos\theta_{k,1} + \cos\theta_{k,2}} \end{cases}$$
(9)

式中,cw为丝带宽度,等于单根丝束宽度与丝带内丝束数的乘积。

2.2 丝束等距及丝带平移

由于相邻丝束之间的距离为单根丝束宽度,铺 放过程中是保持不变的,因而将问题转化为求解平 面曲线的等距偏移曲线问题,对于任意的参数t₀需满 足式(10)。

$$\boldsymbol{O}_{k}(t_{0}) = \boldsymbol{p}(t_{0}) + \boldsymbol{k} \cdot \boldsymbol{t}\boldsymbol{w} \cdot \boldsymbol{N}(t_{0})$$
(10)

式中, $O_k(t)$ 为偏移后曲线,p(t)为参考路径, $k \in [-tn/2, tn/2]$ 且为整数,tn为丝带内丝束数,tw为丝束宽度, $N(t_0)$ 为参考路径的单位法向量。

为了高效获得丝带内所有丝束边界的B样条参数表达形式,不能简单将按式(10)求得的一系列点 拟合为B样条曲线。由于参考路径的曲率半径远小 于偏移距离,因而偏移后曲线不会产生尖点或环,采 用偏移控制多边形同时不断插入节点的方法求解偏 移曲线。偏移得到的样条曲线*A*_k(*t*)与真实偏移*O*_k (*t*)之间的误差可按式(11)判定,采样点的个数按文 宇航材料工艺 http://www.yhclgy.com 2021年 第5期 献[18]设置。参考路径偏移后的结果已展示在图5中。

$$\left|O_{k}(t_{m}) - A_{k}(t_{m})\right| < \varepsilon \tag{11}$$

为使丝束铺满整个铺丝构件且产生的重叠尽可 能少,丝带平移的距离*d*应为丝带在平移方向上的宽 度的最小值,如式(12)所示。平移得到丝带集合记 为*C*。

$$d = \frac{cw}{\cos\varphi_{\min}} \tag{12}$$

式中, q_{min}为沿参考路径纤维铺放角的最小值。

2.3 丝束剪断策略

丝带平移之后,相邻丝带间会出现重叠现象,如 图5所示,使用剪丝与重送功能时丝束将沿纤维角度 的法向方向被剪断,剪断位置与采用的覆盖参数 (coverage parameter)有关。图7展示了不同覆盖参 数对剪断位置的影响,其中边界曲线为相邻丝带的 边界线,覆盖参数选为0%情况下,当丝束某一边界 抵达边界曲线时立即剪断丝束,这将产生没有纤维 的间隙区域,称为完全间隙情况;若覆盖参数选为 100%,则当丝束两边界均抵达边界曲线时才剪断丝 束,因而产生重叠区域,称为完全重叠情况。覆盖参 数选为其他中间值时,间隙与重叠将同时存在。丝 束剪断过后而在铺层内最终形成的楔形缺陷即称为 内嵌缺陷。

Fig. 7 Tow drop under different coverage parameter

为描述方便,将*i、j*分别定义为丝带编号和丝束 编号,将平移法得到丝带集合C中沿平移反方向第*i* 个丝带记为C_i,该丝带内沿平移反方向第*j*个丝束边 界曲线记为tb_{i,j},由丝束边界曲线tb_{i,j}及tb_{i,j+1}定义的 丝束记为t_{i,j},*i*,*j*的含义以下适用。

为求得剪断点,先计算丝带内丝束与边界曲线 之间的交点,边界曲线记为Bⁱ(t),依次取为C_i中的 tb_{i,m+1},tb_{i+1,j}与边界曲线的第k个交点记为ip_{i+1,j,k},构成 集合Ip_{i+1,j}。一条边界曲线与相邻丝带的交点结果如 图8所示。边界曲线与丝束边界曲线的交点一般有 两个交点。求得的交点结果为空间坐标值,还需通 过点反演的方式变换为所属丝束边界曲线的参数 值,参数坐标命名为相应空间坐标名称追加p。

-75 -

Fig. 8 Intersection points of boundary curves and course

下面给出完全间隙情况与完全重叠情况下的丝 束剪断策略(完全间隙策略及完全重叠策略)下的剪 断点求解方法,丝束t_{i,j}的剪断点集合记为Tp_{i,j},相应 第 k 个剪断点记为 tp_{i,j,k}, k 至多为2。完全间隙策略 下,当丝束任一边界抵达边界曲线 Bⁱ(t)时立刻剪断 丝束,剪断点集合Tp_{i,j}就是 Ip_{i,j}。完全重叠策略下,丝 束的全部边界都抵达边界曲线 Bⁱ(t)时才进行剪断, 剪断点集合Tp_{i,i}为 Ip_{i,i}。

当覆盖参数取为其他值时,将会出现重叠与间 隙同时存在的情况,剪断点将不再是边界曲线与丝 带的交点,记第i个丝带的参考路径为R(u),相应的 单位法矢向量为N(u),则当覆盖参数cp取为 β 时,求 解式(13)即可求得剪断点,剪断点通常有两个解,分 布在丝带的两侧,若丝束 t_{i+1} 两丝束边界曲线与边界 曲线B(t)均无交点,则方程(13)无解,当 β 取为0或1 时,方程退化为计算丝带内丝束与边界曲线之间的 交点问题。一种剪断情况如图9所示。

Fig. 9 Points for arbitrary *cp* solution of tow drop 将剪断点 *tp*_{i+1,j,k}变换为所属丝束边界曲线的参 数值记为 *tpp*_{i+1,j,k},属于集合 *Tpp*_{i+1,j}。

$$\begin{cases} \left| t\mathbf{p}_{i+1,j,k} - \mathbf{R}^{i+1}(u) \right| = (tn/2 - \beta - j + 1) \cdot tw \\ \mathbf{B}^{i}(t) = t\mathbf{p}_{i+1,j,k} \end{cases}$$
(13)

— 76 —

除了以相邻丝带的底端丝束边界曲线 tb_{i.m+1}作 为边界,还需要考虑铺丝构件的外形边界对丝束的 限制,只需将外形边界作为新的边界曲线计算与丝 带的交点,并采用完全重叠策略求得剪断点。至此 我们可以获得任意覆盖参数下的丝束剪断位置。

2.4 内嵌缺陷精确定位

丝束剪断后单层铺层内将产生相应的内嵌缺 陷。所谓内嵌缺陷定位是指若给定铺丝构件上任意 一点p,判断其位于内嵌缺陷区域还是正常纤维区 域。首先需要确定丝束剪断之前给定点p所属丝束 的编号i与j,点p向参考路径R(u)正交投影,投影点 记为q=R(pp),pp为其参数值,然后求解方程(14)。 由于剪断操作前相邻丝带间存在重叠,因而位于重 叠区内的点p,将有两个解i₁,i₂,取二者中较大的值。

$$\begin{cases} \left| \boldsymbol{p} - \boldsymbol{R}^{i}(pp) \right| \leq cw/2 \\ j = ceil(\frac{(cw/2 - \left| \boldsymbol{p} - \boldsymbol{q} \right|)}{tw}), \ \boldsymbol{r} \cdot (\boldsymbol{p} - \boldsymbol{q}) \geq 0 \ (14) \\ j = ceil(\frac{(cw/2 + \left| \boldsymbol{p} - \boldsymbol{q} \right|)}{tw}), \ \boldsymbol{r} \cdot (\boldsymbol{p} - \boldsymbol{q}) < 0 \end{cases}$$

式中,r为丝带平移方向向量,ceil为向上取整函数。

Fig. 10 Location of embedded defects

获得点 p 所在丝束 $t_{i,j}$ 的编号后,为便于描述,将 完全间隙情况下的剪断点集合另命名为 $GT_{p_{i,j}}$ = { $gtp_{i,j,k}$ },将完全重叠情况下的剪断点集合记为 $OT_{p_{i,j}}$ = { $gtp_{i,j,k}$ },相应的参数集合分别记为 $GTpp_{i,j}$ = { $gtpp_{i,j,k}$ }、 $OTpp_{i,j}$ ={ $otpp_{i,j,k}$ }。对位于丝束 $t_{i,j}$ 内的点 p, 其对应参数坐标 pp 通过求解式(15)获得,采用完全 间隙策略时若 p 位于间隙处,则须满足式(16),采用 完全重叠策略时若 p 位于重叠处,其到编号 i-1 丝带 的参考路径法向距离小于丝带宽的一半,则须满足

宇航材料工艺 http://www.yhclgy.com 2021年 第5期

式(17),而当覆盖参数取为 β 时,记对应的剪断点为 *iup_{i,j,k}*,相应参数坐标为*iup_{i,j,k}*,判断是否位于间隙时 须满足式(18),判断是否位于重叠时须满足式(19), 如图 10所示,当 β =0时,式(18)退化为式(16),当 β =1 时,式(19)退化为式(17)。通过上述算法,给定构件 上一点,对于任意覆盖参数取为 β 均可判断其是否位 于内嵌缺陷区域,且能够判别具体位于空隙区域抑 或是丝束重叠区域。

$$\left| \boldsymbol{p} - \boldsymbol{R}^{i}(pp) \right| \cdot \boldsymbol{N}^{i}(pp) = 0$$
 (15)

$$\begin{cases} gtpp_{ij+1,1} \leq pp \leq gtpp_{ij,1}, \text{or} \\ gtpp_{ij} \leq pp \leq gtpp_{ij,1}, \end{cases}$$
(16)

$$\begin{aligned} \left| \boldsymbol{p} - \boldsymbol{R}^{i-1}(pp') \right| &\leq cw/2 \\ otpp_{ij,1} \leq pp \leq otpp_{ij-1,1}, \text{or} \end{aligned} \tag{17}$$

$$\left[otpp_{ij-1,2} \leq pp \leq otpp_{ij,2},\right]$$

$$\begin{cases} gtpp_{ij+1,1} \leq pp \leq itpp_{ij,1}, \text{or} \\ itpp_{ij,2} \leq pp \leq gtpp_{ij+1,2}, \end{cases}$$
(18)

$$\begin{cases} \left| \boldsymbol{p} - \boldsymbol{R}^{i-1}(pp') \right| \le cw/2 \\ itpp_{i,j,1} \le pp \le otpp_{i,j-1,1}, \text{or} \\ otpp_{i,j-1,2} \le pp \le itpp_{i,j,2}, \end{cases}$$
(19)

3 实例验证

为验证本文所述内嵌缺陷精确定位算法的正确 性及有效性,使用 MatlabR2018软件开展数值仿真实 验并可视化铺丝构件中内嵌缺陷的分布情况。铺丝 构件为B样条基表示的开边柱面,参考路径采用本 文提出的二次B样条曲线并已相应延长。以下实例 的丝束数量及丝束宽度均分别取为8、6 mm。

3.1 单层铺层实例

铺层采用<10(0.6)50(0.48)46)>铺放方式,当 覆盖参数选为0%、50%、100%时,即对应完全间隙情况、中间情况、完全重叠情况,铺丝构件内嵌缺陷分 布分别如图11~图13所示,图中,蓝色区域表示间隙 缺陷,红色区域代表重叠缺陷。

图13中间隙的分布情况具有图11的分布特征,

图 11 覆盖参数 0% 内嵌缺陷分布 Fig. 11 Distribution of embedded defects for cp 0% 宇航材料工艺 http://www.yhclgy.com 2021年 第5期

图 13 中重叠的分布情况也继承图 12 的分布规律,这 与算法描述的规律是一致的,覆盖参数选为 0% 或 100% 是两种特例。

图 12 覆盖参数 100% 内嵌缺陷分布 Fig. 12 Distribution of embedded defects for cp 100%

图 13 覆盖参数 50% 内嵌缺陷分布 Fig. 13 Distribution of embedded defects for cp 50%

3.2 多层铺层实例

铺层采用[±<10(0.6)50(0.48)46)>/±<20(0.6)40 (0.49)38)>]。铺放方式,这里将铺丝构件进行网格划分, 离散为大量壳单元体,依据本文内嵌缺陷精确定位算 法判断各单元体是否位于内嵌缺陷区域。覆盖参数选 为0%,铺丝构件内间隙分布情况如图14所示。其中图 例百分比表示沿铺层厚度方向单元体内间隙量的平均 占比,0%代表完全没有间隙的区域,而100%代表沿铺 层厚度均为间隙的区域。本文算法可以真实再现多层

铺层铺丝构件中的内嵌缺陷分布,因而可为后续有限 元精细模型建立提供理论基础及建模依据。

4 结论

采用平移丝束法生产变角度铺丝构件时,间隙 和/或重叠形式的局部内嵌缺陷会不可避免的产生。 基于本文提出的更具设计自由度的B样条参考路 径,为了确定开边柱面铺丝构件铺层中内嵌缺陷的 位置及分布特征,提出了一种内嵌缺陷精确定位算 法,并给出了具体详细的算法步骤,除了适用于完全 间隙策略及完全重叠策略,亦可确定任意覆盖参数 下的内嵌缺陷分布,实例仿真表明该算法可以精确 定位内嵌缺陷位置,真实再现铺丝构件中的内嵌缺 陷分布,并可为后续相应有限元分析中的缺陷建模 提供算法依据。

参考文献

[1]马立敏,张嘉振,岳广全,等.复合材料在新一代大型 民用飞机中的应用[J].复合材料学报,2015,32(2):317-322.

MA Limin, ZHANG Jiazhen, YUE Guangquan, et al. Application of composites in new generation of large civil aircraft [J]. Acta Materiae Compositae Sinica, 2015, 32(2): 317–322.

[2] PRUSTY B G, OROMIEHIE E, RAJAN G. Introduction to composite materials and smart structures [M]. New York: CRC Press, 2016; 1–19.

[3] OROMIEHIE E, PRUSTY B G, COMPSTON P, et al. Automated fiber placement based composite structures: review on the defects, impacts and inspections techniques [J]. Composite Structures, 2019, 224(SEP.): 110987.

[4] GÜRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations: Variable stiffness concept[J]. AIAA Journal, 1993, 31(4): 751-758.

[5] BLOM A W, LOPES C S, KROMWIJK P J, et al. A theoretical model to study the influence of tow-drop areas on the stiffness and strength of variable-stiffness laminates [J]. Journal of Composite Materials. 2009, 43: 403-425.

[6] MISHRA V, PEETERS D M J, ABDALLA M M. Stiffness and buckling analysis of variable stiffness laminates including the effect of automated fibre placement defects [J]. Composite Structures, 2019, 226:111233.

 [7] CROFT K, LESSARD L, PASINI D, et al.
Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates [J].
Composites Part A, 2011, 42(5):484–491.

[8] 李韦清,杨涛,刘思南,等. 自动铺放内嵌缺陷构件成型 方式对拉伸性能的影响[J]. 宇航材料工艺,2019,49(3):45-50.

LI Weiqing, YANG Tao, LIU Sinan, et al. Influence of forming method of embedded defects introduced by automated fiber placement on tensile properties [J]. Aerospace Materials & Technology, 2019,49(3):45–50.

[9] 丰亮宽,杨涛,杜宇,等.自动铺丝末端缺陷角度对层 合板拉伸性能的影响[J]. 宇航材料工艺,2020,50(3):62-68.

FENG Liangkuan, YANG Tao, DU Yu, et al. Influence of defect angle at the end of tows on the tensile properties of laminates by automated placement [J]. Aerospace Materials & Technology, 2020, 50(3):62~68.

[10] FAYAZBAKHSH K, NIK M A, PASINI D, et al. Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by automated fiber placement [J]. Composite Structures, 2013, 97(3):245-251.

 $[\,11\,]$ NIK M A , FAYAZBAKHSH K , PASINI D , et al. Optimization of variable stiffness composites with embedded defects induced by Automated Fiber Placement [J]. Composite Structures, 2014, 107(7):160–166.

[12] MAROUENE A, BOUKHILI R, CHEN J, et al. Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite laminates – A numerical and experimental study [J]. Composite Structures, 2016, 140: 556–566.

[13] 年春波, 王小平, 代文猛, 等. 基于 ABAQUS 二次开 发变角度层合板屈曲特性分析[J]. 宇航材料工艺, 2019, 49 (4):17-22.

NIAN Chunbo, WANG Xiaoping, DAI Wenmeng, et al. Analysis of buckling properties of variable angle laminated plates based on secondary development of ABAQUS [J]. Aerospace Materials & Technology, 2019, 49(4):17–22.

[14] 富宏亚, 曹忠亮, 杜霖, 等. Bezier 曲线变角度层合板设 计及屈曲特性分析[J]. 复合材料学报, 2017, 34(8): 1729–1735.

FU Hongya, CAO Zhongliang, DU Lin, et al. Design of bezier curve variable angle laminates and analysis on buckling property[J]. Acta Materiae Compositae Sinica, 2017, 34(8):1729–1735.

[15] 安鲁陵,周燚,周来水.复合材料纤维铺放路径规划 与丝数求解[J]. 航空学报,2007(3):745-50.

AN Luling, ZHOU Yi, ZHOU Laishui. Composite fiber placement path planning and fiber number determination [J]. Acta Aeronautica et Astronautica Sinica, 2007(3):745–750.

[16] 宋桂林,王显峰,赵聪,等.规则回转体自动铺丝轨 迹规划与丝束增减[J]. 航空学报,2020,41(11):383-393.

SONG Guilin, WANG Xianfeng, ZHAO Cong, et al. Fiber placement trajectory planning and tows increase or decrease for revolution body [J]. Acta Aeronautica et Astronautica Sinica, 2020,41(11):383-393.

[17] 施法中. 计算机辅助几何设计与非均匀有理B样条 [M]. 北京:高等教育出版社,2013.

SHI Fazhong. CAGD&NURBS [M]. Beijing: Higher Education Press, 2013.

[18] PIEGL L A, TILLER W. Computing offsets of NURBS curves and surfaces [J]. Computer Aided Design, 1999, 31(2): 147–156.