CFRP制孔加工切屑形成过程及分类

王义文 高贵敏 付鹏强 蒋银红 许成阳

(哈尔滨理工大学机械动力工程学院,哈尔滨 150080)

文 摘 为了控制切屑形成,提高CFRP吸气式内排屑系统的排屑质量,建立了二维直角切削受力模型, 研究了切屑的形成过程并对切屑形状进行预测并分类,用超景深显微镜(KEYENCE VHX-1000)对切屑进行 观察,通过分析可得:切屑形成的主要原因是切屑弯曲折断与剪切失效,切屑的大小一般在1.02~1.80 mm,切 屑的形状主要分为条形切屑、微圆型切屑和米形切屑三种,当温度达到树脂的玻璃化温度时,切屑发生变形, 会出现C形屑并伴有纤维拔出现象,除不可估算占比的米形屑外,不同形态切屑的占比大小依次为条形切屑、 微圆形切屑、C形屑和纤维拔出形切屑。实验结果与理论分析结果基本相吻合。

关键词 CFRP,二维直角切削模型,切屑形成,切屑分类

中图分类号:TH145.9 DOI:10.12044/j.issn.1007-2330.2022.01.015

Chip Formation Process and Classification in CFRP Drilling

WANG Yiwen GAO Guimin FU Pengqiang JIANG Yinhong XU Chengyang (School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080)

Abstract In order to control the chip formation and improve the chip removal quality of CFRP suction type internal chip removal system, a two-dimensional right angle cutting force model was established. The chip formation process was studied, and the chip shape was predicted and classified. KEYENCE VHX-1000 was used to observe the chips. The results show that the main causes of chip formation are chip bending fracture and shear failure. The chip size is generally between 1.02~1.80 mm. The chip shape is mainly divided into strip chip, micro round chip and meter chip. When the temperature reaches the glass transition temperature of resin, the chip will deform, C-shaped chip and fiber will appear the pull-out phenomenon, the proportion of chips with different shapes is strip chip, micro round chip, C-shaped chip and fiber pull-out chip, except for the rice chip which can not be estimated. The experimental results are in good agreement with the theoretical analysis.

Key words Carbon fiber reinforced composites (CFRP), Two-dimensional orthogonal cutting force model, Chip formation, Chip classification

0 引言

碳纤维增强复合材料(CFRP)因质轻、强度高和 硬度大等优良特性而被广泛应用于航空航天、汽车 和体育器材等各个领域^[1-3]。碳纤维增强复合材料 在制孔加工过程中会产生粉末状切屑,未排出的切 屑在已加工表面与刀具之间会形成研磨机制,容易 对已加工表面形成二次加工;碳纤维具有一定的导 电性,扩散的粉末状切屑容易导致加工设备短路^[4]。 而CFRP吸气式内排屑系统可将切屑在产生时通过 刀具的排屑流道及时自动排出,切屑的形成过程和 形态对切屑的排出质量具有重要影响。因此,研究 材料的切屑形成过程对设计和优化CFRP吸气式内 排屑系统,从而实现对切屑形成过程的控制、提高排 屑质量具有重要意义。

目前,已经有学者对碳纤维复合材料的切屑进行 了研究。陈燕等^[5]通过对切屑形成机制的研究,表明了 在不同纤维角度下,纤维失效的具体形式为层间分离、 纤维切断和纤维弯曲剪切三种;汪海晋^[6]对钻削模型进 行受力分析,分析了CFRP在钻头开始切入和切出阶段 中的受力状况与缺陷形成的关系;鲍永杰^[7]通过对二维 切削模型的研究,获得切削变形与切屑形成的关系;付 饶^[8]采用高速摄影-显微观测技术,研究了不同温度下

基金项目:国家自然科学基金资助项目(51475127).

收稿日期:2021-12-29

第一作者简介:王义文,1972年出生,博士,教授,主要从事数控加工、机械加工表面的无损检测和机电产品的设计与开发工作。E-mail: 13946030110@126.com

CFRP单向层合板的成屑特征;齐振超等^[9]通过仿真直 观的展示了基体和纤维的失效形式。已有研究已经在 一定程度上解析了材料失效与切屑形成过程的关系, 但少有研究者从力学的角度研究切屑的理论形成过程, 对于材料特性与切屑形成过程、形态之间的关系有待 于进一步研究。

本文针对以上各位学者的研究,建立二维直角 切削受力模型,从力学的角度分析CFRP的切屑形成 过程并对切屑的形状进行预测,最后通过试验来验 证所研究理论的正确性。

1 CFRP材料性能分析

CFRP是由树脂结合按照不同角度层叠铺设的 纤维构成,切屑形成过程是树脂基体塑性形变破坏 和碳纤维以不同失效形式断裂相互交织作用的复杂 过程,与合金不同^[10],碳纤维复合材料是典型的正交 各向异性、横观各向同性材料,典型复合材料组成及 层叠铺设方式如图1所示。碳纤维与树脂材料的某 些物理性能与力学性能相差较大,材料加工比较困 难,严重影响了工件的加工质量。CFRP组成部分的 物理与力学性能参数^[8,11]如表1所示。

2 CFRP切屑形成过程分析及分类

CFRP的切屑形成过程不仅与加工设备的工艺参数、刀具形状等传统因素有关,还受碳纤维、树脂基体

表1 性能参数对比 Performance parameter comparison table

Tob 1

复合材料	拉伸强度 σ_1 /MPa	拉伸弹性模量 <i>E/</i> GPa	失效温度 ^[12] <i>T/</i> ℃		
聚丙烯腈碳纤维	2 500~3 000	207~3 245	800		
环氧树脂	58	2.6	约150		

的自身性质和碳纤维铺层方向的直接影响。为了简化 切屑的形成过程,采用二维直角切削模型进行力学分析,把纤维方向与切削方向的夹角θ分为0°~90°和 90°~180°两大类,取典型值45°和135°进行具体 分析。

2.1 0°~90°纤维方向材料的切屑形成过程与形态分析

当 θ = 45°时,CFRP的受力示意图如图2所示。*R*为刀具对切削区的作用力,*F*₂为*R*沿着水平方向的分力, θ 为纤维方向与进给方向的夹角, α 为刀具对工件的力 与水平方向所夹的锐角,*F*₂为*R*沿着竖直方向的分力。

图 2 CFRP受力示意图 Fig. 2 Force diagram of CFRP

 F_{1z} 和 F_{2z} 为 F_{z} 在沿着纤维方向和垂直于纤维方向的力, F_{1y} 和 F_{2y} 分别是 F_{y} 沿着纤维方向和垂直于纤维方向的分力,由于切屑是向外流出的,因此 $F_{1z} > F_{1y}$, F_{1} 为平行于纤维方向的切向力, F_{2} 为垂直于纤维方向的剪切力。沿纤维和垂直于纤维方向的合力计算公式如下:

$$\begin{cases} F_1 = R\cos\alpha\cos\theta - R\sin\alpha\sin\theta\\ F_2 = R\cos\alpha\sin\theta + R\sin\alpha\cos\theta \end{cases}$$
(1)

由表2可知,碳纤维复合材料的主承力部分碳纤维 的横向剪切强度和材料的层间剪切强度相对较小,是 材料失效时考虑的重要因素。碳纤维复合材料为硬脆 性材料,其基本组成部分碳纤维和树脂分别为脆性材 料和塑性材料,因此,在加工过程中,碳纤维先发生脆 性断裂而后树脂材料因塑性变形而失效破坏。设 σ_1 为 碳纤维与树脂间的界面剪切强度极限, σ_2 为碳纤维的 剪切强度极限。在刀具沿着切削方向移动过程中, F_1 和 F_2 会随着刀具的前进而逐渐增大。当 F_2 超过碳纤维 剪切强度极限时,即满足公式 $F_2 > \sigma_2$ 时,碳纤维在剪切 力的作用下发生剪切脆性断裂,碳纤维复合材料出现 沿着 F_2 方向的裂痕,在刀具沿切削方向进给过程中,当 平行于碳纤维的切向力 F_1 超过碳纤维与树脂间的界面 剪切强度时,即公式 $F_1 > \sigma_1$ 成立时,环氧树脂材料产生 塑性形变与碳纤维界面发生剪切滑移而形成从前刀面 流出的切屑。

3	表 2	材料	·参数	
Tab. 2	Ma	terial	paramete	ers

材料的层间剪切强度	碳纤维的横向剪切强	碳纤维的纵向拉伸
/MPa	度/MPa	强度/MPa
95	105	350~7 000

碳纤维复合材料为硬脆性材料,其切屑为崩碎 型切屑。由于碳纤维的强度远大于树脂,因此在加 工过程中,碳纤维先发生脆性断裂,树脂材料再发生 剪切滑移,具体过程如图3所示。

图 3 切屑形成过程示意图 Fig. 3 Schematic diagram of chip formation process

(1)纤维是硬脆性材料,在加工过程中几乎不发 生变形,树脂的弹塑性变形特性使纤维与树脂的剪 切滑移平面粗糙。

(2)根据 θ =0°~90°受力特点可得,在一定的切 削深度下,裂缝向剪切力 F_2 方向延伸,通过界面的剪 切滑移将切屑流出,最终形成表面粗糙的条形切屑。 2.2 0°~90°纤维方向材料的切屑形成过程与形态分析

当 θ = 135°时,CFRP的受力示意图如图4所示, 刀具对切削区域的作用力分解方法与 θ = 45°同理。

$$F_{3} = F_{N1} \cos(\pi - \theta) + F_{N1} \sin(\pi - \theta) + F_{z} \sin(\pi - \theta) - F_{y} \cos(\pi - \theta)$$

$$F_{4} = F_{N1} \sin(\pi - \theta) - F_{N2} \cos(\pi - \theta) - F_{z} \cos(\pi - \theta) - F_{y} \sin(\pi - \theta)$$
(6)

式中, F_3 为垂直于纤维的作用力, F_4 为平行于纤维的 作用力。 F_3 和 F_4 随着刀具的切入而增大,在刀具的 切削过程中,当 F_3 超过纤维的剪切应力强度 σ_2 时, 纤维弯曲剪切断裂,当 θ 增大到一定值时,纤维因脆 性折断而失效,当 θ = 180°时,碳纤维因折断而失 效,裂纹沿着 F_3 方向延伸,直到 F_4 超过纤维与树脂的 界面剪切强度 σ_1 时,切屑通过前刀面流出,形成形状 不规则的微圆形切屑,切屑形成的裂纹扩展示意图 如图5所示。

与 θ = 45°不同的是,当 θ = 135°时,垂直于纤维的力方向不同,裂纹扩展方向不同,从而切屑流出形态不同,在切削厚度一定的情况下,一般产生微圆形切屑。

由于上述两种情况的纤维方向不同,因此在相同加工条件下,纤维受力方向不同,纤维失效方式不

切削方向 刀具 F₁₂ F

图 4 CFRP 受力示意图 Fig. 4 Force diagram of CFRP

当 θ = 135°时,刀具对切削区域产生支持力 F_N,β 为 F_N 与水平方向所夹的锐角, F_N 为 F_N 沿着竖直方向上 的分力, F_{N2} 为 F_N 在水平方向上的分力,其中 F_{N1} 和 F_{N2} 分别是 F_N 沿着纤维方向和垂直于纤维方向的分 力, F_{N21} 和 F_{N22} 分别是 F_N2 沿着纤维方向和垂直于纤 维方向的分力,将沿着纤维方向的力和垂直于纤维 方向的力进行叠加,由力的叠加原理可得到的合力 示意图如5所示,其计算公式如下:

$$(2)$$

$$\pi - \theta) - F_{z}\cos(\pi - \theta) - F_{y}\sin(\pi - \theta)$$

$$n = 0, 20^{\circ}$$

$$\pi - \theta) - F_{z}\sin(\pi - \theta)$$

$$\pi - \theta = 45^{\circ}$$

$$\pi - \theta = 45^{\circ}$$

$$\pi - \theta = 45^{\circ}$$

$$\pi - \theta = 45^{\circ}$$

~90°主要产生条形切屑,在 $\theta = 90°~180°$ 主要产生 微圆形切屑。

在材料加工过程中,已加工表面与刀具后刀面 的摩擦、碳纤维与树脂界面的剪切滑移和碳纤维与 树脂的断裂失效都会产生大量的热,而CFRP的导热 性较差,树脂基体对温度的敏感性高,当温度达到树 脂的玻璃化温度时,基体材料热软化效应和应变率 强化现象同时存在,碳纤维与树脂间的界面破坏所 需要的剪切力减小,切屑的厚度相应减小,切屑形态 易发生改变。

以上的直角切削模型对不同条件下的切屑产生 过程进行分析并对切屑的形成过程进行了描述,但 在实际加工过程中,CFRP的加工过程复杂,切屑的

宇航材料工艺 http://www.yhclgy.com 2022年 第1期

-100 -

形成过程和流出状态还需要进一步研究。

二维直角切削模型为钻削三维模型的瞬间切削 过程,在钻削切削过程中,横刃垂直于钻头轴线,而 主切削刃相对于钻头轴线是倾斜的,麻花钻的切削 过程为斜刃切削。在叠层复合材料的钻削过程中, 主切削刃的上的每个切削刃单元对不同方向纤维层 进行加工时可近似等效为二维直角切削过程,三维 钻削过程中,主切削刃可与同一纤维层的材料呈不 同方向进行直角切削,形成的在0°~90°和90°~180° 范围内的切削过程分别与45°和135°具有一定的相 似性,因此,材料的失效方式基本不变。

3 切屑分类实验

3.1 实验条件

在CFRP的制孔加工过程中,与单铺层直角切削 模型相比,钻削CFRP过程中不仅会产生扭矩,而且 因材料所具有的各向异性特性而产生复杂的切屑形 成过程机制,通过对二维直角切削模型进行分析,可 以在一定程度上反映CFRP制孔切屑的形成过程。

为了对上述直角切削模型的相关理论进行验证 并对实际加工过程进行分析,钻头及模型如图6~图7 所示。采用安装有 Φ 8 mm标准麻花钻的大连立式数 控铣床(VDL-1000E)在主轴转速为n = 3000 r/min、 进给量f = 0.06 mm/r的条件下加工厚度为5 mm的碳 纤维复合材料,用吸气式内排屑系统进行加工并将 切屑进行收集。取少量的切屑进行均匀铺散开,用 超景深显微镜(KEYENCEVHX-1000)观察切屑的 形状。

Fig. 6 drill

图 7 材料图片及模型示意图 Fig. 7 Material picture and model diagram

3.2 实验结果与分析

部分切屑的测量结果如下,通过测量产生的切 屑等效直径范围是0.2~1.8 mm,切屑的形状以条形切 屑、微圆形切屑和形状很小的米形屑为主,还有少量 的纤维拔出形切屑和C形屑,具体实验观察结果与 分析如下。将最大长度小于100 μm的切屑定义为米 形屑,如图8所示。

宇航材料工艺 http://www.yhclgy.com 2022年 第1期

Fig. 8 Rice chip

在 CFRP 制孔加工过程中,麻花钻初切入 CFRP 时,材料首先受到横刃的冲击力作用,在横刃的剪切 力和主切削刃扭矩与剪切的的双重作用下,材料被 挤压并与切削刃产生错位而形成如图 8 所示的形状 不规则且微小的挤裂和崩碎型切屑。材料的二次加 工等其他因素也可能会产生此种切屑。

图9 条形切屑图 Fig. 9 Strip chip

图 10 微圆形切屑 Fig. 10 Microcircular chips

当钻头完全进入材料时,主切削刃切入的长度 达到最大。由于钻削的进给量是一定的,因此钻头 的单位切深和切屑厚度是确定的。切削刃相对于被 切削材料是倾斜的且存在不确定的扭矩作用,钻头 起主要切削作用的主切削刃在加工过程中为斜刃切 削,在钻头转过一定角度的过程中,逐渐远离刀具中 轴线的主切削刃单元切削宽度逐渐增加,因此材料 失效时在会出现两端大小不一的现象。主切削刃在 逐渐切入材料到切出的过程中,切入材料的主切削 刃长度逐渐增加到最大长度后保持不变,最后逐渐 减小而切出,切屑的长度随主切削刃切入的长度增 加而增加到最大后不变,主切削刃切出过程中,切削 刃长度会逐渐减小。在其他条件不变的情况下,切 屑的厚度随着进给量的增加而增大。切削过程中可 能会出现条形切屑和微圆形切屑,如图9和10所示。

材料导热性差且在加工过程中产生粉末状切 屑,热量的积累使材料的温度升高,当温度达到树脂 基的玻璃化温度时,由于扭矩的作用,条形切屑会变

图 11 C形切屑图 Fig. 11 C chip

图 12 纤维拔出形切屑 Fig. 12 Pull-out chips

实验中的切屑形状基本与理论分析相一致,理 论分析结果与实验结果基本相吻合。

4 结论

理论研究结果表明,CFRP制孔切屑的形成与纤 维方向、温度等因素有关;材料的主要失效方式为崩 碎型、剪切滑移型和弯曲剪切型;切屑形状主要有条 形切屑、微圆形切屑和米形切屑三种;当温度达到环 氧树脂的玻璃化温度时,纤维与树脂间的粘结力降 低,切屑会发生变形,从而出现纤维拔出现象和C形 屑,基本上符合制孔加工过程中的切屑形成类型。

参考文献

[1] 陈涛, 苗光, 李素燕. 碳纤维复合材料切削加工技术研 究进展[J]. 哈尔滨理工大学学报, 2016(2):71-77.

CHEN Tao, MIAO Guang, LI Suyan. Review of the machining technology of carbon fiber reinforced composite [J]. Journal of Harbin University of Science and Technology, 2016(2):71–77.

[2] 殷俊伟,贾振元,王福吉,等. 基于 CFRP 切削过程仿真的面下损伤形成分析[J]. 机械工程学报,2016,52(17):58-64.

YIN Junwei, JIA Zhenyuan, WANG Fuji, et al. FEM simulation analysis of subsurface damage formation based on continuously cutting process of CFRP[J]. Journal of Mechanical Engineering, 2016, 52(17): 58–64.

[3] LIU D F, TANG Y J, CONG W L, et al. A review of mechanical drilling for composite laminates [J]. Composite Structures, 2012, 94(4): 1265–1279.

[4] 王义文,许成阳,许家忠,等. CFRP加工用内排屑钻头 排屑条件的仿真分析及试验研究[J]. 机械工程学报,2019,55 (5):223-231.

WANG Yiwen, XU Chengyang, XU Jiazhong, et al. Simulation analysis and experimental study on chip removal conditions of internal chip removal bits for cfrp machining [J]. Journal of Mechanical Engineering, 2019, 55(5): 223–231.

[5] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2): 301-306.

CHEN Y, GE E D, FU Y C, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer [J]. Acta

成有一定弯曲角度的C形屑。纤维与树脂间的结合 力降低,切屑变小,容易出现纤维拔出现象,形成毛 刺等缺陷,如图11~13所示。

图 13 毛刺缺陷图片 Fig.13 Burr defect

Materiate Composite Sinica, 2015, 32(2): 301-306.

[6] 汪海晋. 树脂基复合材料钻削缺陷产生机理与控制策略研究[D]. 济南:山东大学,2016.

WANG Haijin. Investigation on Generation mechanism and control strategy of defect in drilling of resin-based composite materials[D]. Jinan: Shandong University, 2016.

[7] 鲍永杰. C/E复合材料制孔缺陷成因与高效制孔技术 [D]. 大连:大连理工大学,2010.

BAO Yongjie, The formation mechanism of disfigurements during drilling and the high efficiency techniques of drilling C/E composite[D]. Dalian:Dalian University of Technology, 2010.

[8] 付饶. CFRP 低损伤钻削制孔关键技术研究[D]. 大连: 大连理工大学,2017.

FU Rao. Research of key technologies for low-damage drilling CFRP composites [D]. Dalian: Dalian University of Technology, 2017.

[9] 齐振超,刘书暖,程晖,等. 基于三维多相有限元的CFRP 细观切削机理研究[J]. 机械工程学报,2016,52(15):170-176.

QI Zhenchao, LIU Shunuan, CHENG Hui, et al. Research on the mesoscopic cutting mechanism of CFRP based on threedimensional multiphase finite element models [J]. Journal of Mechanical Engineering, 2016, 52(15): 170-176.

[10] 吴明阳,王博,程耀楠,等. 高温合金材料特性及加工 技术进展[J]. 哈尔滨理工大学学报,2015(6):24-31.

WU Mingyang, WANG Bo, CHENG Yaonan, et al. Development of the material properties and machining technology of superalloy [J]. Journal of Harbin University of Science and Technology, 2015(6): 24–31.

[11] 王奔. 切削力和热对 C/E 复合材料制孔损伤的影响机 理[D]. 大连:大连理工大学,2014.

WANG Ben. Influence mechanism of cutting force & heat on hole-making damage of C/E composites [D]. Dalian: Dalian University of Technology, 2014.

[12] 温泉. C/E复合材料制孔损伤形成机理与评价方法研 究[D]. 大连:大连理工大学,2014.

WEN Quan. Study of formation mechanism and evaluation method of C/E composites hole-making damages [D]. Dalian: Dalian University of Technology, 2014.

— 102 —