高强度中间相沥青基泡沫碳的制备及性能

李四中^{1,2} 宋 $燕^1$ 史景利¹ 刘 B^1 郭全贵¹

(1 中国科学院山西煤炭化学研究所炭材料重点实验室,太原 030001)(2 中国科学院研究生院,北京 100039)

文 摘 以中间相沥青为原料,通过加入中间相碳微球和溶剂抽提两种方法对中间相沥青进行改性,实现 了对中间相沥青基泡沫碳的微观结构的调控,对两种方法进行了对比讨论。结果表明,改性后沥青制备的泡沫 碳的裂纹数量较少,长度较短,并且泡沫碳的孔径较小;加入 55%中间相碳微球的沥青制备的泡沫碳的炭化(1 573 K)后的压缩强度高达 26 2 MPa,在 2 873 K石墨化后强度达到 17.7 MPa,热导率为 41.4 W / (m·K)。利用 甲苯抽提后的沥青得到的泡沫碳在炭化(1 573 K)后强度高达 30.0 MPa,在 2 873 K石墨化后强度达到 9 MPa, 热导率达到 80 W / (m·K)。

关键词 泡沫碳,中间相碳微球,甲苯抽提,结构调控,压缩强度

Preparation and Characterization of High Strength Carbon Foam Derived From Mesophase Pitch

L i Sizhong^{1, 2} Song Yan¹ Shi Jingli¹ L iu Lang¹ Guo Quangu¹ (1 Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001) (2 Graduate University of the Chinese Academy of Sciences, Beijing 100039)

Abstract In the present work, the modified mesophase pitches were used as precursors to prepare carbon foam. The modification of mesophase pitch could tailor the microstructure of as-prepared carbon foam. Amount of cracks in as-prepared carbon foam was less than that of carbon foam derived from pure mesophase pitch, and the length of cracks in as-prepared carbon foam was shorter. Moreover, the pore diameter of as-prepared foam was smaller Carbon foam with compressive strength of 26.2 MPa was obtained by adding 55% MCMB s into mesophase pitch. After graphitization at 2 873 K, carbon foam with compressive strength of 17. 7 MPa and thermal conductivity of 43. 7 W / (m \cdot K) was obtained Carbon foams derived from mesophase pitch treated by toluene extraction after carbonization at 1 573 K had a high compressive strength of 30.0 MPa After graphitization at 2 873 K, the foams had a compressive strength of 9 MPa and a thermal conductivity of 80 W / (m \cdot K).

Key words Carbon foams, Mesocarbon microbeads, Toluene extraction, Microstructure tailoring, Compressive strength

1 前言

在 20世纪 60~70年代,人们利用热固性树脂发 泡后炭化得到网状碳泡沫,这种泡沫玻璃碳具有高强 度、低密度、耐高温等性能^[1~2],但热导率较低,在大 的热冲击作用下会产生裂纹,造成材料失效^[3~6]。而 利用中间相沥青制备的泡沫石墨,具有低密度、高热 导率的特点;还具有孔径可调且相互贯穿、比表面积 大、密度热导率变化范围大,并且电导率可控等^[3~14] 优点。传统的机械加工作业能够用于生产形状复杂 的泡沫材料^[5~6]。因此,中间相沥青基碳泡沫在国防 等行业有广阔的应用前景^[5~14]。

中间相沥青基泡沫碳的强度较低,在其扫描电镜 图片中可以看出其中的裂纹较大较多,因此,对中间

作者简介:李四中,1979出生,博士研究生,主要从事新型炭材料的研究。 E - mail: lisi202001@tom.com

http://www.yhclgy.com 宇航材料工艺 2009年 第 6期

收稿日期: 2009 - 03 - 03;修回日期: 2009 - 04 - 21

相沥青基泡沫碳的结构调控需要进行系统的研究^[5~8,14]。一般通过工艺参数进行调控,但是结构调控的范围较小,无法满足某些特殊的需要^[7~13]。中间相沥青发泡过程是受中间相沥青的黏弹性、黏度和表面张力的影响,当通过工艺参数无法解决泡沫碳的微观结构时,可以考虑通过改变发泡沥青的性质进行结构的调控,从而达到提高泡沫碳强度的目的。

本文通过加入中间相碳微球以及利用甲苯抽提的手段,实现了中间相沥青基泡沫碳的结构调控,提

高了泡沫碳的强度。考察了原料处理对中间相沥青 基泡沫碳微观结构的调控效果,研究了泡沫碳在石墨 化后的性能,并对结构和性能的相关性进行研究。

- 2 实验
- 2.1 原料

以日本三菱气体化学公司的萘基合成中间相沥 青 (MP)为主要原料 (表 1)。中间相碳微球 (MCMB) 是大阪煤气公司生产,其挥发份与元素分析见表 2。

表 1 中间相沥青的性质 Tab. 1 Properties of M P

软化点 /K	中间相含量 /% (体积分数)	挥发份含量 /% (质量分数)	甲苯不溶物 /% (质量分数)	吡啶不溶物 /% (质量分数)
556	100	21. 5	78. 1	62. 0

表 2 中间相碳微球的挥发份与元素组成 Tab. 2 Element composition and

volatile content of MCMBs

挥发份含量	元素含量 /% (质量分数)			原子比	
/% (质量分数)	С	Н	Ν	H/C	N/C
8. 5	93. 3	2.99	0.56	0. 38	0. 0051

甲苯:分析纯,天津市天大化学试剂厂。原料的 挥发份测定按照 GB2003—80进行。中间相碳微球 的元素分析中除了 C、H、N外假设为 O,根据外推法 可以得到其质量分数。

2.2 材料制备

将中间相沥青与中间相碳微球混合,得到混合沥 青 MP1。将沥青利用甲苯进行抽提得到部分甲苯不 溶物,干燥,得到抽提沥青 MP2。将原料破碎至小于 150 µm,置入高压釜中,加热至 523 K时通入氮气加 压至 3 MPa,釜芯升至 733 K恒温 2 h。将制得的原 料泡沫以 15 K/h升至 1 573 K进行炭化。将炭化后 的样品以 10 K/min升至 2 873 K,恒温 0.5 h。由 MP1制备出的泡沫碳及泡沫石墨分别记为 CF1 - x 和 GF1 - x, x表示为 MP1中中间相碳微球的质量分数。由 MP2制得泡沫碳及泡沫石墨分别记为 CF2 - y和 GF2 - y, y表示为沥青中甲苯可溶物的质量分数。由纯 MP在不同压力下制备的泡沫碳及泡沫石 墨分别记为 CF0和 GF0。

2.3 材料的结构及性能表征

样品的微观结构利用日本电子 JSM - 6360LV型 扫描电镜观察。压缩强度测试采用深圳新三思材料 检测有限公司 CMT4303微机控制电子材料实验机。 样品尺寸 10 mm ×10 mm ×10 mm,载荷加载速率为 1 mm/min。材料热导率的计算由公式 = × × C_p 计 算。式中,为热扩散系数,为密度, C_p 为石墨理论 热容 [713 J/(kg·K)]。热扩散系数利用 Netzsch LFA447/2 - 2 InSb Nano Flash型热扩散仪测试。导 热测试样品尺寸为 10 mm ×10 mm ×4 mm,对泡沫碳 的热导率进行测试。

3 结果与讨论

3.1 泡沫碳的微观结构与原料调控的关系

图 1和图 2分别为 CF1系列和 CF0样品的微观 结构照片。

http://www.yhclgy.com 宇航材料工艺 2009年 第 6期

— 38 —

(c) CF1-50

(d) CF1-55

图 1 CF1系列炭化后的扫描电镜照片

Fig 1 SEM images of CF1 series after carbonization

从图 1可以看出加入中间相碳微球后泡沫碳的 裂纹数量较少、长度较短。随着中间相碳微球质量分 数的增加,泡沫碳的孔径减小。这是由于沥青在发泡 的过程中,沥青熔融,其中的轻组分受热挥发、分解, 气体在熔融沥青中成泡^[3~4]。气体在长大的过程中 气泡会在表面张力的作用下合并,沥青的黏度和黏弹 性,以及表面张力主导熔融沥青中气泡的长大合并过 程^[15]。中间相碳微球的加入导致中间相沥青黏弹性 变差,虽然黏度增加,但是气泡在沥青中的稳定性变 差、气泡易于合并。在中间相炭微球质量分数小于 40%时,泡沫碳的孔径大干同等条件下制备的泡沫碳 的孔径^[16]。当中间相碳微球的质量分数大干 40%. 沥青的黏度增加较多,此时黏度的增加占据主导,从 而导致泡沫碳的孔径变小,另外中间相碳微球自身的 强度很高,在泡沫碳中起到弥散增强的作用,并且有 钉扎效应,使泡沫碳在炭化的过程中裂纹数量减少, 长度变短。

图 3为通过溶剂抽提 MP制备的泡沫碳的微观 结构照片。

图 2 CF0炭化后的扫描电镜照片 Fig 2 SEM images of CF0 after carbonization

由图 2和图 3可以看出随着甲苯可溶物的减少, 泡沫碳的孔径减小,泡沫碳中的裂纹长度变小。随着 甲苯可溶物的减少,熔融沥青黏度的增加,导致气泡 合并困难,因此气泡的孔径变小;同时甲苯可溶物的 减少致使沥青中可以分解的轻组分变少,同样可以导 致泡沫碳的孔径减小^[4,7]。在沥青中的轻组分减少 的同时,得到的生料样品在炭化的过程中收缩变小, 泡沫碳的裂纹数量减少,裂纹长度减小。

图 3 CF2系列炭化后扫描电镜照片

Fig 3 SEM images of CF2 series after carbonization

3.2 泡沫碳的压缩强度与微观结构的关系 图 4为 CF1系列与 CF0系列泡沫碳的密度与强

度的关系,可以发现:CF1的强度随着中间相碳微球 的增加而增加,在相同密度下 CF1系列的强度超过

http://www.yhclgy.com 宇航材料工艺 2009年 第 6期

CF0,密度为 0. 69 g/cm³的泡沫碳的压缩强度可达 26. 2 MPa。在图 1 中可以发现 CF1 中裂纹数量很 少,强度较高^[17]。当载荷加载到 CF1系列达到一定 程度时,也会产生裂纹,但是由于中间相碳微球的存 在,裂纹产生偏转,分散应力,使裂纹长度达不到临界 断裂长度,仍能保持泡沫碳的完整性^[17]。CF1 - 35 的强度较低是由于其孔径较大及其密度较低造成 的^[18]。

图 5为 CF2系列泡沫碳的密度、强度与 MP中甲 苯可溶物质量分数的关系。可以看出 CF2系列的强 度随着甲苯可溶物的增加而降低。由图 3可以看出 CF2系列的裂纹长度较短,与 CF1系列相类似,短的 裂纹导致 CF2系列的压缩强度较高。另外 CF2中的 裂纹呈"之 形,在裂纹扩展时,裂纹会产生偏转,使 裂纹的有效长度减小,从而其强度较高^[16]。CF2-3 炭化后压缩强度增加到 30.0 MPa。

中间相沥青的强度较低是由于中间相沥青中的 轻组分较多造成裂纹长度较长、裂纹数量较多导致 的。添加中间相碳微球与甲苯抽提中间相沥青均有 效减小了中间相沥青中的轻组分,从而使泡沫碳中的 裂纹长度减小,对中间相沥青基泡沫碳的强度有大幅 提升。另外,由于中间相沥青中轻组分的减少,泡沫 碳的孔径也较小,孔径的减小也会在一定程度上增加 泡沫碳的强度^[18]。

3.3 泡沫石墨的晶格参数及性能

表 3为几种泡沫石墨的性能参数。可以看出:在 密度相近的情况下, GF1 - 55的压缩强度是 GF0的 8 倍以上.但是 GF1系列的热导率要稍低于 GF0。石 墨材料的热导率不仅与材料的微晶参数、石墨微晶的 排列形式相关,并且与材料的微观结构密切相关。石 墨材料的热导率沿着层面比垂直于层面高大约两个 数量级。GF0的裂纹虽然较长,但属平行与韧带状结 构,对其热导率有一定的的影响。另外 GF0的 L。值 较大,达到 259 nm,有利于材料的热导率的提高^[14]。 GF1中有大量的中间相碳微球.碳微球的石墨层面在 GF1中是随机排布。碳微球的石墨层面有相当部分 是垂直干石墨泡沫的传热方向的,中间相碳微球的存 在就阻碍了石墨泡沫的导热^[8,15],因此降低了 GF1 系列的热导率,其中 GF1 - 55 热导率达到 41.4 W / $(m \cdot K)$ 。此外, GF1系列的 L。值比 GF0小,这进一 步降低了材料的热导率。 GF2系列的热导率较 GF0 高.主要是由于甲苯抽提导致沥青中的轻组分减少. 沥青的流动性减小,中间相沥青在发泡过程中裂纹较 少,导致石墨条带之间的通道增加,热阻减小造成的。 虽然甲苯抽提中间相沥青导致 GF2系列的 duo大于 GF0的 dow, L。值小于 GF0的,但是由于裂纹的减少 在一定程度上削弱了这种影响,GF2-3的热导率达 到 80.0W/($m \cdot K$)。

			=	=	
样品	热导率 /W · (m · K) ⁻¹	压缩强度 /MPa	密度 /g·cm ⁻³	d ₀₀₂ 层间距 /mm	$L_{\rm c}$ / nm
GF0	60. 1	2. 8	0. 73	0. 3361	259
GF1 - 50	43. 7	23. 7	0. 78	0. 3362	23
GF1 - 55	41. 4	17. 7	0. 75	0. 3371	20
GF2 - 5	70. 0	4. 5	0. 69	0. 3363	136
GF2 - 3	80. 0	9. 0	0. 91	0. 3367	104

表 3 样品的晶格参数及性能 Tab. 3 Crystal parameters and performance of samples

http://www.yhclgy.com 宇航材料工艺 2009年 第 6期

CF1系列石墨化后得到的 GF1其强度仍然能够 保持较高的水平是由于中间相碳微球的均匀分布,石 墨化后中间相碳微球依旧会使裂纹偏转,增加泡沫碳 的强度,CF1 - 55在石墨化后其强度保持在 17.7 MPa。GF2的强度下降较多是由于 GF2是由抽提过 的沥青发泡制备而成,仍然呈现条带状的结构,在石 墨化以后加载负荷,裂纹将沿着石墨层面的方向扩 展,所以 GF2系列的强度较低,其中 GF2 - 3的压缩 强度为 9.0 MPa,但是仍然高于 GF0。两种方法制备 的 GF1 - 50、GF1 - 55、GF2 - 5和 GF2 - 3的孔径均 较小,因此这几个样品的强度均较高^[18]。

4 结论

本文讨论了添加中间相碳微球或者甲苯抽提两 种方法对所制备的中间相沥青基泡沫碳的微观结构 的调控行为。研究发现这两种方法均能够大幅度减 少泡沫碳的裂纹,使泡沫碳的性能得到提高。中间相 碳微球或者甲苯抽提均是减少中间相沥青中的轻组 分的含量,从而达到改善泡沫碳强度的目的。

(1)添加中间相碳微球造成所制泡沫碳的裂纹 数量较少,裂纹长度较小。中间相碳微球质量分数为 55%时,所制泡沫碳的压缩强度可达 26.2 MPa,石墨 化后强度仍然保持到 17.7 MPa,热导率达到 41.4 W/(m·K)。

(2)甲苯抽提后的中间相沥青所制备泡沫碳的
强度大幅度提高,炭化后压缩强度增加到 30.0 MPa,
石墨化后的强度保持在 9.0 MPa,其热导率达到 80.0
W / (m·K)。

参考文献

1 Benton S T, Schmitt C R. Preparation of syntactic carbon foam. Carbon, 1972; 11 (2): 185 ~ 190

2 Nicholson J, Thomas C R. Syntactic carbon foam. Carbon, 1973; 11 (1): 65 ~ 66

3 Kleet J W. Process for making carbon foams US patent: US 6033506, 2000

4 Kleet J W, Hardy R, Romine E et al High-thermal-con-

ductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties Carbon, 2000; 40: 953 ~ 973

5 成会明,刘敏,苏革等.泡沫炭概述.炭素技术,2000; 19(3):30~32

6 李凯,栾志强.中间相沥青基炭泡沫.新型炭材料, 2004;19(1):77~78

7 LiTQ, Wang CY, An BX et al Reparation of graphitic carbon foam using size-restriction method under atmospheric pressure Carbon, 2005; 43: 2 030 ~ 2 032

8 李同起,王成扬.中间相沥青基泡沫碳亮的制备与结构表征.无机材料学报,2005;20(6):1438~1444

9 邱介山,李平,刘贵山等.由中间相沥青制备泡沫碳 亮:Fe(NO₃),的影响.新型炭材料,2005;20(3):193~197

10 Gallego N C, Klett J W. Carbon foams for thermal management Carbon, 2003; 41: 1 461 ~ 1 466

11 Wang M X, Wang C Y, Zhang X L et al Effects of the stabilization conditions on the structural properties of mesophasepitch-based carbon foams Carbon, 2006; 44: $3\ 371 \sim 3\ 372$

12 Seshan K Low density microcellular carbon foams as catalyst carriers Applied Caatalysis, 1989; 55(1):2

13 闫曦,史景利,宋燕等.中间相沥青基泡沫炭的制备 及性能.宇航材料工艺,2006;36(2):56~59

14 Li S, Song Y, Song Y et al Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch Carbon, 2007; 45: 2 092 \sim 2 097

15 Narsimhan G, Wang Z Rupture of equilibrium foam films due to random thermal and mechanical perturbations Colloids and Surf A, 2006; $282 \sim 283$: $24 \sim 36$

16 吴其晔. 高分子材料流变学导论. 北京:化学工业出版社, 1994: 254~261

17 关振铎,张中太,焦金生.无机材料物理性能.北京: 清华大学出版社,1992:42~47

 18 Sihna S, Roy A K Modeling and prediction of bulk properties of open-cell carbon foam. J. Mech Phys Solids, 2004;
52: 167 ~ 191

(编辑 任涛)