树脂 η^* 和 T_g 对 C/E 预浸料黏性的表征

石佩洛1

梁洪涛² 白雪莲¹ 臧 千¹ 阙伟婧¹

(1 航天材料及工艺研究所,北京 100076)

(2 海军驻北京地区特种导弹专业军事代表室,北京 100076)

文 摘 针对复合材料预浸料工艺性缺少可量化表征方法的现状,研究了 4 种 C/E 预浸料的黏性及其环 氧树脂体系的物理特性。发现预浸料黏性可以通过环氧树脂体系动态复数黏度 η^* 和 T_g 两个物理量表征,环 氧树脂的 $\eta^* = 35$ kPa·s 附近, $T_g = 0^{\circ}$ 附近预浸料黏性较为合适。

关键词 预浸料,黏性,流变,玻璃化转变

中图分类号:TB3 DOI:10.3969/j.issn.1007-2330.2016.06.016

Characterization of C/E Prepregs' Tack Properties by η^* and T_{g} of Resins

SHI Peiluo¹ LIANG Hongtao² BAI Xuelian¹ ZANG Qian¹ QUE Weijing¹

(1 Aerospace Research Institute of Materials & Processing Technology, Beijing 100076)

(2 Navy Stationed in Beijing Area of Military Representative of Special Missile, Beijing 100076)

Abstract The processability of prepregs lacks quantitative characterization methods. By studying the rheological properties and the glass transition temperatures of 4 typical epoxy resins and their C/E prepregs' processability, it proved that the subjective notion of the tack property of prepregs can be characterized objectively by two physical properties: the η^* and the T_g . It is shown that epoxy resins with $T_g = 0^{\circ}$ C or $\eta^* = 35$ kPa \cdot s yield optimum tack properties for prepregs. **Key words** Prepreg, Tack, Rheology, Glass transition

0 引言

预浸料的黏性(Tack)是指其黏附于自身或者其他材料表面的能力^[1],是影响其工艺性的重要因素。预浸料应有一个合适的黏度范围以满足工艺要求,目前国际上还没有普遍接受的定量表征方法^[2]。文献中报道的已有的预浸料黏性的研究方法包括垂直测试法^[1]、滚球法^[1]和楔子剥离法^[3]等。这些方法均无法对配方设计和优化起到直接的指导作用。本文以现有4种预浸料用环氧树脂为对象,开展预浸料黏性影响因素的机理研究。研究了T700/环氧预浸料的黏性随树脂的动态复数黏度 η^* 和 T_g 客观表征量的变化规律。

- 1 实验
- 1.1 材料

碳纤维,T700S-12K,日本东丽公司;环氧树脂体 系4种,代号为 EP-1、EP-2、EP-3和 EP-4,自制。

1.2 试样制备

将碳纤维分别与4种树脂体系复合,制成面密度

165 g/m²、34wt%的预浸料,代号为T700/EP-1、 T700/EP-2、T700/EP-3和T700/EP-4。

1.3 分析测试

(1)黏性试验:将每种牌号预浸料分别加工成 100 mm×100 mm的方形试样 10个,进行手工铺黏试 验,判断其黏性。若铺贴过程中层间易滑移则判断为 "干";若难以错位调整则判断为"黏";若即不滑移又 可错位调整则判断为"合适"。

(2)流变试验:采用 Anton Paar 公司的 Physica MCR301 流变仪。应用铝制平行板夹具,直径 25 mm,间距1 mm,空气气氛进行实验,应变振幅为1%, 测试频率为0.1~100 Hz。

(3) DSC:采用 Mettler 公司的 DSC 设备。取样品
约 10 mg,以 10℃/min 的升温速率,从-50~50℃进行
扫描测量来确定 T_g。

- 2 结果与讨论
- 2.1 黏性试验

通过铺黏试验发现 T700/EP-1 偏"干";T700/EP

收稿日期:2016-02-18;修回日期:2016-07-14

作者简介:石佩洛,1986年出生,博士,工程师,主要从事树脂基结构复合材料的相关研究。E-mail: shipeiluo@163.com

-2和T700/EP-3黏性较为合适;T700/EP-4偏"黏"。

2.2 流变测试

流变动态频率扫描可以了解材料对冲击(高频) 或逐渐加载(低频)的响应,表征材料的储能模量 G', 耗损模量 G"和复数黏度 η*等线性黏弹特征。4 种环 氧树脂体系的流变特性见图 1。

从图 1(a)和(b)中可以看出随着频率增大,4种树脂的储能模量 G'(弹性部分)和损耗模量 G"(黏性部分)均增大。其中 EP-1增加最为明显,图 1(c)表现出其损耗角 tanδ 的减小最为明显。在低频区(0.1 Hz),G">G',黏性不可逆形变行为占据主导,试样表现出流体特性。在高频区(100 Hz),随着弹性模量G'的增加,可逆的弹性形变逐渐占据主导,试样表现出刚性和固体特性。

从图 1(d)可以看出 4 种树脂的 η^* 均随着频率的 升高而减小。其大小排序为: η^* (EP-1)> η^* (EP-2)> η^* (EP-3)> η^* (EP-4)。这个顺序与他们所对应的黏 性(由"干"至"黏")变化趋势一致。由此可以判断将 树脂在室温(25℃)、0.1 Hz 条件下,其 η^* 控制在 45~ 25 kPa·s 时,可以得到黏性合适的预浸料。

2.3 DSC 测试

测试了 4 种环氧树脂的 DSC 曲线, 通过数学分析得到了 T_g 的分布范围。由图 2 可见, 其试样 T_g 的 台阶出现在 0~10°C, 一般取曲线热流 q 斜率最大的 点为 T_g , 采用式(1)对 DSC 曲线进行微分, 其峰值位 置即为 T_g 。

$$T_{\rm g} = \max\left\{\frac{\mathrm{d}q}{\mathrm{d}T}\right\} \tag{1}$$

对4种树脂进行测试,并绘制T_a分布图(图3)。

4 种环氧树脂的 T_g 值由高到低依次是 EP-1>EP -2>EP-3>EP-4,分别为 5.8、1.6、-1.0 和-7.5℃。 T_g 的最大值与最小值差约 13℃。4 种树脂基体的 T_g 从 高到低的变化趋势与其对应的 C/E 预浸料主观上由 "干"至"黏"的趋势一致。因此可以判断未固化树脂 的 T_g 值在 1.6~-1℃(EP-3),即 0℃附近时可以得到 黏性较为合适的预浸料。

2.4 讨论

预浸料的黏性,缺少定量表征方法。然而黏度是 可客观表征的物理量。常用的黏度有复数黏度和零 剪切黏度两种。根据 Cox-Merz 规则^[5],零剪切黏度 等于剪切速度无限小或振荡频率无限小情况下的复 数黏度,即:

$$\eta_0 = \eta^*(\omega) \mid_{\omega \to 0}$$
(2)

本文中流变测量的频率最小值是 0.1 Hz。

通过 2.1 的结果可知, EP-2 树脂和 EP-3 树脂 之间的区域对应于预浸料黏性最佳的区域。通过 2.2 和 2.3 的测试结果,这个黏性最佳区域对应于环氧树 脂 T_g =0℃或 η^* =35 kPa·s(频率=0.1 Hz)附近的区 域。

因此,C/E 预浸料使用过程中主观感受的黏性概 念与客观的测试表征之间的联系被建立起来,并且定 量确定了最优化的参数(图4)。图中横坐标是 *T_g*,纵 坐标是室温下得到的动态复数黏度 *η*^{*}。

Fig.4 Complex viscosity VS. glass transition temperature

这个定量参数的确定对于配方设计和优化具有 直接指导意义。影响树脂体系黏度的因素有很多,包 括各组分聚合物的分子链结构、聚合物的分子量和分 子量分布、不同组分的比例等。就分子链结构来说, 酚醛环氧等在室温下通常表现为半固体,而缩水甘油 胺型环氧等通常为低黏度液体。就分子量大小来说, 通常分子量越大,一个分子链包含的链段数目就越 多,实现分子间相对位移,需要完成的链段协同位移 的次数越多,聚合物黏度增大。分子量分布对黏度的 影响可以类比玻璃化转变温度分布对其流变性能的 影响可以类比玻璃化转变温度分布对其流变性能的 影响^[6-7]。根据以上的分析,预浸料用树脂体系流变 特性和 *T*g可以通过组分结构、分子量和比例等综合 控制得到调控,进而对预浸料的黏性和工艺性进行优 化。

3 结论

(1)通过测量未固化树脂常温下 η* 及其 T_g两个 客观物理量实现了对于 C/E 预浸料的黏性这一主观 术语的客观表征。

(2) T_g =0℃或室温下 η^* =35 kPa·s 这个区域附 近的环氧树脂体系制备出的 C/E 预浸料具有最佳的 操作工艺性。

参考文献

[1] 张彦中.复合材料预浸料的黏性及其表征方法[J].纤 维复合材料,1997,26(1):26-30.

[2] MIL-HDBK-17F-1F[M] Volume 1, Revised edition 17 June 2002, Chapter 5.4.8.

[3] 陆楠楠,肖军,齐俊伟,等.面向自动铺放的预浸料动 态黏性实验研究[J].航空学报,2014,35(1):279-286.

[4] FERRY J D. Viscoelastic Properties of Polymers [M], 3rd Revised edition. John Wiley & Sons Inc., 1980.

[5] 孙磊,佟丽莉.Cox-Merz 规则和时温叠加原理在聚合物剪切黏度测量中的应用与研究[J].纤维复合材料,2013 (4):8-12.

[6] SHI PEILUO, et al.Glass transition distribution in miscible polymer blends: from calorimetry to rheology [J].Macromolecules,2013,46(9):3611-3620.

[7] FRANCOIS TANGUY, et al. Quantitative analysis of the debonding structure of soft adhesives[J].Eur., Phys., J., E, 2014, 37:3.