摘要
为研究不同发射极面积的SiGe HBTs在极端温度下的辐照特性,本文系统地表征了质子辐照前后功率硅锗异质结双极晶体管(SiGe HBTs)在不同温下的辐照特性;揭示发射极面积与功率SiGe HBTs的辐照损伤相关性;对功率SiGe HBTs器件进行建模研究,提取辐照影响器件内部的主要参数;表征了不同条件下辐照前后电子密度变化量(Δ edensity)、载流子复合率变化量(Δ SRH recombination)以及载流子迁移率变化量(Δ emobility),对辐照影响功率SiGe HBTs的内部物理机制进行系统的分析。研究结果表明,功率SiGe HBTs的发射极面积与质子辐照损伤成正比,性能退化严重;在极端温度下,具有更好的抗质子辐照能力;在抗辐照领域和空间应用等领域有巨大的潜力。
硅锗异质结双极晶体管(SiGe HBTs)具有体积小,兼容性好,更高的特征频率和最大振荡频率等特性,因而通常被集成在射频器件中,如:通信系统。此外,它有较宽工作温度范围及辐照耐受性等优势,因而在抗辐照领域具有广阔大的应用前
研究表明,辐照对器件造成的损伤机制主要包括位移损伤和电离损伤,同时揭示了辐照对SiGe HBTs的EB结附近以及浅沟道隔离层(STI,shallow trench isolation)影响最
本工作中对极端温度下功率SiGe HBTs的辐照特性进行了相关研究:(1)在3种不同温度环境下进行不同发射极面积的功率SiGe HBTs质子辐照实验,同时表征出器件在辐照损伤下的直/交流特性;(2)采用Sentaurus TCAD软件上按照实际SiGe HBTs器件的参数建立工艺模型和器件结构模型,基于建立的模型在不同温度和辐照通量下仿真得到的直流特性和交流特性与实际器件相符;(3)基于模型表征了不同条件下辐照前后电子密度变化量(Δ edensity)、载流子复合率变化量(Δ SRH recombination)以及载流子迁移率变化量(Δ emobility)具体分析功率SiGe HBTs内部物理机制,为空间实验研究提供了可靠的理论指导。
本工作质子辐照实验中,使用Tower Jazz公司采用0.35 μm SiGe BiCMOS工艺技术制造到的功率SiGe HBTs器

图1 功率SiGe HBTs的光学显微镜图像
Fig.1 Optical microscopic image of the SiGe HBTs with multi-fingers
采用Sentaurus TCAD软件对功率SiGe HBTs器件进行建模如

图2 TCAD模型结构
Fig.2 Model structure of TCAD
器件 编号 | 器件结构参数 | 实验及仿真环境参数 | ||||
---|---|---|---|---|---|---|
总发射极面积 /μ | 基极厚度 /nm | 质子辐照 | 实验和仿真温度 /K | 仿真中γ辐照剂量 /krad | ||
通量/1 | 能量/MeV | |||||
HBT1 | 146 | 50 |
1 10 50 | 62.5 |
77 300 393 |
136 2720 6800 |
HBT2 | 438 | |||||
HBT3 | 730 | |||||
HBT4 | 1461 |
基于器件模型进行仿真,将仿真的转移特性与实验测试结果进行了比较(

(a) 室温

(b) 极端温度
图3 不同温度下辐照前后SiGe HBTs的转移特性
Fig.3 Gummel characteristics of pre- and post-radiated SiGe HBTs at different temperatures

(a) ΔIB

(b) 1/βpost-1/βpre
图4 不同辐照通量下Δ IB和1/βpost-1/βpre随发射极面积的变化
Fig. 4 ΔIB and 1/βpost-1/βpre vs. emitter area (AE) with different radiation fluences
为了研究极端温度对功率SiGe HBTs辐照特性的影响,分别固定VBE (在低温时,开启电压较高VBE=0.7 V;在室温和高温时,VBE=0.5 V)和固定IC条件,将IB进行归一化处理进行分析,如

(a) 固定VBE,Δ IB/IB-pre随温度的变化

(b) 固定IC,ΔIB/IB-pre随温度的变化
图5 固定VBE和IC ,不同辐照通量下ΔIB/IB-pre随温度的变化
Fig.5 ΔIB/IB-pre vs. temperature with different radiation fluences with fixed VBE (a) and IC(b)
通过Gmax来表征功率SiGe HBT的交流性能。实验测量了不同温度下发射极面积为438 μ

(a) 300 K

(b) 77 K

(c) 393 K

(d) ΔGmax随温度的变化
图6 不同温度辐照前后Gmax随频率的变化和不同辐照通量下ΔGmax随温度的变化
Fig.6 Gmax vs. frequency of the pre- and post-radiated SiGe HBTs at different temperatures,ΔGmax vs. temperature at different radiation fluence
为更直观的分析SiGe HBTs在质子辐照后器件内部物理机制的变化,表征不同发射极面积在辐照前后器件的 Δedensity,如

图7 不同发射极面积下SiGe HBTs EB结附近电子密度变化量
Fig.7 Δedensity near the EB junction of the SiGe HBTs with different emitter areas
基于建立的模型,分别在固定VBE和IC,提取在不同温度下器件在辐照前后EB结附近的电子密度,如

(a) 固定VBE

(b) 固定IC
图8 固定VBE和IC,不同温度下SiGe HBTs EB结附近
Fig.8 Δ edensity near EB junction of the pre- and post-radiated SiGe HBTs at different temperature with fixed VBE and IC
辐照前后电子密度变化量
此外,表征了不同温度下辐照前后模型中的载流子复合率变化量ΔSRH。一般来说,发射极-基极的消耗区与基极的SRH载流子复合率可用
(1) |
辐照后在EB结附近产生更多的G/R陷阱中心,使得在EB结附近的载流子浓度增加。同时质子辐照对器件造成的位移损伤和电离损伤使得载流子寿命(τ)减

(a) 固定VBE

(b) 固定IC
图9 固定VBE和IC,不同温度下SiGe HBTs EB结附近
Fig.9 Δ SRH recombination near the EB junction of the
辐照前后SRH 载流子复合率变化量
pre- and post-radiated SiGe HBTs at different
;temperature with fixed VBE and IC
对于极端温度抑制辐照对SiGe HBTs的损伤原因:一方面在77 K下,晶格具有较小的热能,G/R陷阱中心被冻结,因此在辐照后产生较少的陷
为了研究交流条件下,温度对质子辐照下的功率SiGe HBTs的内部物理机制的影响,基于该模型同样表征出不同温度下器件内部的电子迁移率变化量(Δ eMobolity)。温度升高导致电子密度升高,电子迁移率降低,因此,Gmax变小。由

图10 不同温度下辐照前后SiGe HBTs载流子迁移率变化量
Fig.10 Δ eMobolity of the pre- and post-radiated SiGe HBTs at different temperatures
综上所述,载流子迁移率是影响质子辐照SiGe HBTs交流性能的主要因素;与室温相比,极端温度可以相对抑制功率SiGe HBTs质子辐照损伤。
研究了质子辐照下不同发射极面积的功率硅锗异质结双极晶体管(SiGe HBTs)在极端温度和室温下的直/交流特性,同时揭示了辐照影响功率SiGe HBTs的内部物理机制。研究结果表明:
(1)发射极面积越大,产生更高的泄露电流,质子辐照引起更多的IB和β退化,性能退化越严重,说明SiGe HBTs功率器件比高速SiGe HBTs器件更容易受到辐照的影响;
(2)功率SiGe HBTs在极端温度下对质子辐照的耐受性优于室温;
(3)通过模型提取影响功率SiGe HBTs辐照特性的主要因素为载流子密度、Shockley-read-Hall (SRH)载流子复合率和载流子迁移率,研究了在辐照下器件的内部物理机制。
综上,SiGe HBTs具有良好的抗辐照特性,在极端环境下有很大的应用潜力。
参考文献
马羽,王志,宽崔伟. SiGe集成电路工艺技术现状及发展趋势[J]. 微电子学,2018, 48(04):508-514. [百度学术]
MA Y, WANG Z, KUAN C W. Current status and future trend of SiGe IC process technology[J].Microelectronics,2018, 48(04):508-514. [百度学术]
黄云波,李博,杨玲等.极端低温下SiGeHBT器件研究进展[J]. 微电子学,2017,47(05):695-700. [百度学术]
HUANG Y B, LI B, YANG L,et al. Research progress of SiGe HBTs under extreme low temperatures[J]. Microelectronics, 2017, 47(05):695-700. [百度学术]
CRESSLER J D. On the Potential of SiGe HBTs for extreme environment electronics[J]. Proceedings of the IEEE, 2005, 93(9):1559-1582. [百度学术]
CRESSLER J D.SiGe HBT technology:a new contender for Si-based RF and microwave circuit applications [J]. IEEE Transactions on Microwave Theory and Techniques, 1998, 46(5): 572-589. [百度学术]
NIU G, MA R, LUO L, et al. Wide temperature range SiGe HBT noise parameter modeling and LNA design for extreme environment electronics[J]. International Jounal of Numerical Modelling, 2015, 28 (6): 675-683. [百度学术]
BABCOCK I A, CRESSLER J D, VEMPATI L S, et al. Ionizing radiation tolerance and low-frequency noise degradation in UHV/CVD SiGe HBT's[J]. IEEE Electron Device Letters, 1995, 16(8): 351-353. [百度学术]
VOINIGESCU S P, SHOPOV S, BATEMAN J, et al. Silicon millimeter-wave terahertz and high-speed fiber-optic device and benchmark circuit scaling through the 2030 ITRS horizon[J]. Proceedings of the IEEE, 2017, 105(6): 1087-1104. [百度学术]
ARUTT C N, WARREN K M, SCHRIMPF R D, et al. Proton irradiation as a screen for displacement-damage sensitivity in bipolar junction transistors[J]. IEEE Transactions on Nuclear Science, 2015, 62(6): 2498-2504. [百度学术]
SOTSKOV D I, ELESIN V V, KUZNETSOV A G, et al. Displacement damage effects mitigation approach for heterojunction bipolar transistor frequency synthesizers[J]. IEEE Transactions on Nuclear Science, 2020, 67(11): 2396-2404. [百度学术]
FLEETWOOD Z E, ILDEFONSO A, TZINTZAROV G N, et al. SiGe HBT profiles with enhanced inverse-mode operation and their impact on singleevent transients[J]. IEEE Transactions on Nuclear Science, 2018, 65(1): 399-406. [百度学术]
ZHANG J X, GUO Q, GUO H X, et al. Impact of bias conditions on total ionizing dose effects of Co-60 gamma in SiGe HBT[J]. IEEE Transactions on Nuclear Science, 2016, 63(2): 1251-1258. [百度学术]
PETROSYANTS K O, KOZHUKHOV M V. Physical TCAD model for proton radiation effects in SiGe HBTs[J]. IEEE Transactions on Nuclear Science, 2016, 63(4): 2016-2021. [百度学术]
PRAVEEN K C, PUSHPA N, PRABAKARA Rao Y P, et al. Application of advanced 200 GHz Si-Ge HBTs for high dose radiation environments[J]. Solid State Electronic, 2010, 54(12): 1554-1560. [百度学术]
NAGATSUMA T, DUCOURNAU G, RENAUD C C. Advances in terahertz communications accelerated by photonics [J]. Nature Photonics, 2016,10(6): 371-379. [百度学术]
ILDEFONSO A, COEN C T, FLEETWOOD Z E, et al. Utilizing SiGe HBT power detectors for sensing single-event transients in RF circuits[J]. IEEE Transactions on Nuclear Science, 2018, 65(1): 239-248. [百度学术]
LI Z, QI B K, ZHANG X H, et al. A 0.32-THz SiGe imaging array with polarization diversity[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(2): 215-223. [百度学术]
HOU L, DU Z W, FU J. The influence of microwave pulse width on the thermal burnout effect of an LNA constructed by the SiGe HBT[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(1): 163-171. [百度学术]
YEH P C, CHIOU H K, LEE C Y, et al. High power density, high efficiency 1W SiGe power HBT for 2.4 GHz power amplifier applications[J]. Solid State Electronic 2008, 52(5): 745-748. [百度学术]
LI X, XIAO J, LIU C, et al. Ionization damage in NPN transistors caused by lower energy electrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment, 2010,621(3): 701-712. [百度学术]
METCALFE J, DORFAN D E, GRILLO A A,et al. Evaluation of the radiation tolerance of several generations of SiGe heterojunction bipolar transistors under radiation exposure [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment, 2007,579(2): 833-838. [百度学术]
QIN G X, MA J G, JIANG N Y, et al. Experimental characterization of proton radiated SiGe power HBTs at extreme temperatures[J]. Journal of Circuits Systems and Computers, 2013, 22(10): 1340026. [百度学术]
QIN G X,YAN Y,JIANG N Y,et al.RF characteristics of proton radiated large-area SiGe HBTs at extreme temperatures[J]. Microelectronics Reliability, 2012, 52(11): 2568-2571. [百度学术]
李兴冀,兰慕杰,刘超铭等. 偏置条件对NPN及PNP双极晶体管电离辐射损伤的影响研[J].物理学报,2013,62(9): 098503. [百度学术]
LI X J,LAN M J, LIU C M, et al. Effects of bias conditions on ionizing radiation damage of NPN and PNP bipolar transistors[J].Acta Physica Sinica, 2007,579(2): 833-838. [百度学术]
CRESSLER J D. Radiation effects in SiGe technology [J]. IEEE Transactions on Nuclear Science 2013, 60(3): 1992–2014. [百度学术]
郑玉展,陆妩,任迪远等. 不同发射极面积npn晶体管高低剂量率辐射损伤特性[J].物理学报,2007,58(8): 5572-5578. [百度学术]
ZHENG Y Z, LU W, REN D Y, et al. Radiation damage characteristics at high and low dose rates of NPN transistors with different emitter areas[J]. Acta Physica Sinica, 2007,58(8): 5572-5578. [百度学术]
CRESSLER J D. Silicon-Germanium as an enabling technology for extreme environment electronics[J]. IEEE Trans. Device and Materials Reliability,2010, 10(4): 437-448. [百度学术]
BARNABY H J, SMITH S K, Schrimpf R D, et al. Analytical model for proton radiation effects in bipolar devices[J]. IEEE Transactions on Nuclear Science, 2002, 49(6): 2643-2649. [百度学术]
SAKS N S, KLEIN R B, YOON S, et al. Formation of interface traps in metal-oxide-semiconductor devices during isochronal annealing after irradiation at 78 K[J]. Journal of Applied Physics, 1991, 70(12): 7434-7442. [百度学术]