航天功能防护涂层设计与调控
作者:
作者单位:

中国科学院宁波材料技术与工程研究所,宁波 315200

中图分类号:

TG174

基金项目:

浙江省自然科学基金 (LR20E050001);国家自然科学基金 (U1737214);国家科技重大专项(2017-Ⅶ-0013-0110)


Design and Modulation of Functional Protection Coatings on Aerospace
Author:
Affiliation:

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [81]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着航空航天技术的不断发展,航天材料在使用过程中会面临更加复杂苛刻的服役环境,研究出具有高硬度、高耐磨性、高耐腐蚀性等不同防护功能的涂层材料成为当前的研究重点。本文系统归纳和评述了润滑涂层、耐磨涂层与耐蚀涂层材料的研究进展,主要包括DLC薄膜、MoS2薄膜、氮化物涂层、石墨烯基涂料等。在此基础上并探讨了复合、梯度多层、纳米多层等结构设计方法和工艺技术及对涂层性能的增强机制。指出航天功能防护涂层未来将向着通过跨尺度结构设计,综合多种防护机理制备出超长寿命的航天功能防护涂层的方向发展。

    Abstract:

    In recent years, with the continuous development of aerospace technology, aerospace materials will face more complex and harsh environment in the use process. Research on coating materials with different protective functions such as high hardness, high wear resistance and high corrosion resistance has become a current research hotspot. The research progress of lubrication coating, wear-resistant coating and corrosion-resistant coating is reviewed, including diamond-like carbon film, molybdenum disulfide film, nitride coating, graphene based coating, etc. On this basis, the design methods and technologies of composite, gradient multilayer and nano multilayer structures are introduced, and the enhancement mechanism of coating performance is discussed. It is pointed out that the future development direction of space functional protective coatings is to prepare ultra long life space functional protective coatings through cross scale structure design and comprehensive protection mechanism.

    参考文献
    [1] QI J, WANG L, WANG Y, et al. The tribological performance of selected solid lubricant films in sand-dust environments [J]. Wear, 2011, 271(5): 899-910.
    [2] ZHANG R, PU J. An in situ approach to robust superhydrophobic carbon-based film [J]. Surface and Interface Analysis, 2016, 48(12): 1345-1349.
    [3] 赵凤平, 李淑欣, 蒲吉斌, 等. 马氏体钢表面磁控溅射类金刚石薄膜滚动接触疲劳失效机理 [J]. 摩擦学学报, https://kns.cnki.net/kcms/detail/62.1095.O4.20210220.1421.029.html,aceppted.ZHAO F P,LI S X,PU J B,et al.Failure mechanism of rolling contact fatigue of magnetron-sputterred DLC film on martensite steel [J].Tribology, https://kns.cnki.net/kcms/detail/62.1095.O4.20210220.1421.029.html,aceppted.
    [4] 郭武明,孙东,蒲吉斌,等.不同涂层在甘油环境下的摩擦学性能对比研究[J].润滑与密封,2019,44(10):121-124,132.GUO W M,SUN D,PU J B,et al. Tribological properties of different coating in glycerol environment[J].Lubrication Engineering,2019, 44(10) : 121-124,132.
    [5] ROBERTSON J.Diamond-like amorphous carbon [J]. Materials Science and Engineering:Reports,2002,37(4): 129-281.
    [6] WU D,REN S,PU J,et al.A comparative study of tribological characteristics of hydrogenated DLC film sliding against ceramic mating materials for helium applications [J].Applied Surface Science, 2018, 441: 884-894.
    [7] 王顺花, 霍磊,鞠鹏飞,等.无氢类金刚石薄膜表面H2O和O2分子共同作用的第一性原理计算 [J].摩擦学学报, 2019,39(3):350-356.WANG S H,HUO L,JU P F, et al. The first-principles calculations of the interaction of H2O and O2 molecules on the surface of hydrogen-free diamond films[J].Tribology,2019,39(3):350-356.
    [8] HUO L, WANG S, PU J, et al. Exploring the low friction of diamond-like carbon films in carbon dioxide atmosphere by experiments and first-principles calculations [J]. Applied Surface Science, 2018, 436: 893-899.
    [9] LIU Z, ZHENG S, LU Z, et al. Adhesive transfer at copper/diamond interface and adhesion reduction mechanism with fluorine passivation: A first-principles study [J]. Carbon, 2018, 127: 548-556.
    [10] 蒲吉斌,王立平, 薛群基.多尺度强韧化碳基润滑薄膜的研究进展 [J].中国表面工程, 2014,27(6):4-27.PU J B,WANG L P,XUE Q J. Progress in strengthening and toughening carbon-cased films [J].China Surface Engineering, 2014, 27(6): 4-27.
    [11] 刘健,曹磊,万勇,等.硼掺杂DLC薄膜在海水环境中的腐蚀磨损性能 [J]. 表面技术,2019, 48(8): 247-256.LIU J,CAO L,WAN Y,et al.Corrosive wear properties of boron-doped diamond-like carbon films in seawater environment[J].Surface Technology,2019,48(8):247-256.
    [12] ZHANG R,PU J,YANG Y,et al.Probing the frictional properties of sulfur-doped diamond-like carbon films under high vacuum by first-principles calculations [J].Applied Surface Science,2019,481:1483-1489.
    [13] PU J,ZHANG G,WAN S,et al.Synthesis and characterization of low-friction Al-DLC films with high hardness and low stress[J].Journal of Composite Materials,2013,49(2): 199-207.
    [14] CUI M, PU J, ZHANG G, et al. The corrosion behaviors of multilayer diamond-like carbon coatings: influence of deposition periods and corrosive medium [J]. RSC Advances, 2016, 6(34): 28570-28578.
    [15] WANG J,PU J,ZHANG G,et al.Architecture of superthick diamond-like carbon films with excellent high temperature wear resistance [J].Tribology International,2015, 81:129-138.
    [16] PU J,WANG J,HE D,et al.Corrosion and tribocorrosion behaviour of super-thick diamond-like carbon films deposited on stainless steel in NaCl solution [J].Surface and Interface Analysis, 2016, 48(6): 360-367.
    [17] CUI M,PU J,LIANG J,et al.Corrosion and tribocorrosion performance of multilayer diamond-like carbon film in NaCl solution [J].RSC Advances,2015,5(127): 104829-104840.
    [18] WANG J, PU J, ZHANG G, et al. Tailoring the structure and property of silicon-doped diamond-like carbon films by controlling the silicon content [J]. Surface and Coatings Technology, 2013, 235: 326-332.
    [19] WANG J,PU J,ZHANG G,et al.Interface architecture for superthick carbon-based films toward low internal stress and ultrahigh load-bearing capacity [J].ACS Applied Materials & Interfaces,2013,5(11):5015-5024.
    [20] 王军军,蒲吉斌,张广安,等.Si过渡层类金刚石薄膜界面优化及其性能研究[J].摩擦学学报,2014,34(5): 531-537.Wang J J, Pu J B, Zhang G A, et al. Interface optimization and property investigation of DLC film with Si transition layer[J]. Tribology, 2014, 34(5): 531-537.
    [21] CAO L,LIU J,WAN Y,et al.Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater [J].Diamond and Related Materials,2020,109: 108019.
    [22] WANG Y,PU J,WANG J,et al.Interlayer design for the graphite-like carbon film with high load-bearing capacity under sliding-friction condition in water [J].Applied Surface Science, 2014, 311: 816-824.
    [23] PU J,REN S,LU Z,et al.A feasible multilayer structure design for solid lubricant coatings in a lunar environment [J]. Rsc Advances, 2016, 6(70): 65504-65517.
    [24] HE D,LI X, PU J,et al.Improving the mechanical and tribological properties of TiB2/a-C nanomultilayers by structural optimization [J].Ceramics International,2018,44(3): 3356-3363.
    [25] PU J, HE D, WANG L. Effects of WC phase contents on the microstructure, mechanical properties and tribological behaviors of WC/a-C superlattice coatings [J]. Applied Surface Science, 2015, 357(DEC.1PT.B): 2039-2047.
    [26] HE D, PU J, LU Z, et al. Simultaneously achieving superior mechanical and tribological properties in WC/a-C nanomultilayers via structural design and interfacial optimization [J]. Journal of Alloys and Compounds, 2017, 698: 420-32.
    [27] HE D, PU J, WANG L, et al. Investigation of post-deposition annealing effects on microstructure, mechanical and tribological properties of WC/a-C nanocomposite coatings [J]. Tribology Letters, 2016, 63(2): 14.
    [28] 蒲吉斌, 万善宏, 胡天昌, 等. 离子液体/织构化类金刚石碳复合润滑薄膜的构筑及其摩擦学性能的研究 [J]. 摩擦学学报, 2012, 32(5): 472-479.PU J B,WAN H S,HU T C,et al.Fabrication and tribological study of ionic liquid/texturing diamond-like carbon composite lubrication films [J].Tribology,2012,32(5): 472-479.
    [29] HE D, ZHENG S, PU J, et al. Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-like carbon film [J].Tribology International, 2015, 82: 20-27.
    [30] ZHAO W,PU J, YU Q, et al.A Novel strategy to enhance micro/nano-tribological properties of DLC film by combining micro-pattern and thin ionic liquids film [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 428: 70-78.
    [31] LIU X, WANG L, XUE Q. DLC-based solid–liquid synergetic lubricating coatings for improving tribological behavior of boundary lubricated surfaces under high vacuum condition [J]. Wear, 2011, 271(5): 889-898.
    [32] LIU X, WANG L, PU J, et al. Surface composition variation and high-vacuum performance of DLC/ILs solid–liquid lubricating coatings: Influence of space irradiation [J]. Applied Surface Science, 2012, 258(20): 8289-8297.
    [33] LIU X,PU J,WANG L,et al.Novel DLC/ionic liquid/graphene nanocomposite coatings towards high-vacuum related space applications [J].Journal of Materials Chemistry A, 2013, 1(11): 3797-3809.
    [34] 郑韶先, 任思明, 蒲吉斌. Cr掺杂类金刚石碳基薄膜在发动机油环境下的摩擦学机制 [J]. 材料研究学报, 2017, 31(1): 18-26.ZHENG S X, REN S M, PU J B. Tribological behavior of Cr doped diamond-like carbon coating in engine oil[J].Chinese Journal of Materials Research, 2017,31(1): 18-26.
    [35] REN S,ZHENG S,JIBIN P,et al.Study of tribological mechanisms of carbon-based coatings in antiwear additive containing lubricants under high temperature [J].R. Adv., 2015,5(81):66426-66437.
    [36] HILTON M R, FLEISCHAUER P D. Applications of solid lubricant films in spacecraft [J]. Surface and Coatings Technology, 1992, 54-55(1): 435-441.
    [37] SHI Y, CAI Z, PU J, et al. Interfacial molecular deformation mechanism for low friction of MoS2 determined using ReaxFF-MD simulation [J]. Ceramics International, 2019, 45(2, Part A): 2258-2265.
    [38] CHEN S, LEI H, LU Z, et al. Friction performance and mechanism of the molybdenum disulfide film in carbon dioxide atmosphere [J]. Ecs Journal of Solid State Science and Technology, 2020, 9(5):055006.
    [39] 王均安,于德洋,欧阳锦林. 二硫化钼溅射膜在潮湿空气中贮存后润滑性能的退化与失效机理 [J]. 摩擦学学报, 1994(1): 25-32.WANG J A,YU D Y,OUYANG J L.Study on the mechanism of lubrication degradation and failure of MoS2 sputtered films stored in the moist air [J].Tribology,1994(1): 25-32.
    [40] LI Q, ZHENG S, PU J, et al. Revealing the failure mechanism and designing protection approach for MoS2 in humid environment by first-principles investigation [J].Applied Surface Science, 2019, 487: 1121-1130.
    [41] 商克栋,郑韶先,鞠鹏飞,等.南海海洋大气环境二硫化钼纳米多层薄膜摩擦学行为研究[J].摩擦学学报, 2018,38(4): 417-429.SHANG K D, ZHENG S X, JU P F, et al. Tribological performance of MoS2/Pb-Ti nano-multilayer coating applied in marine atmospheric environment of south China sea [J]. Tribology, 2018, 38(4): 417-429.
    [42] SHANG K, ZHENG S, REN S, et al. Improving the tribological and corrosive properties of MoS2-based coatings by dual-doping and multilayer construction [J]. Applied Surface Science, 2018, 437: 233-244.
    [43] 鞠鹏飞, 王海新, 蒲吉斌, 等. 空间部件表面Ti/MoS2润滑涂层性能研究 [J]. 真空科学与技术学报, 2018, 38(10): 901-905.JU P F,WANG H X,PU J B,et al.Impact of Ti-doping on tribological properties of MoS2 coatings on spacecraft component [J].Chinese Journal of Vacuum Science and Technology,2018, 38(10):901-905
    [44] 关晓艳,王立平,张广安,等.磁控溅射沉积高承载、低摩擦MoS2/Ti复合薄膜 [J].摩擦学学报,2015,35(3): 259-265.GUAN X Y,WANG L P, ZHANG G A,et al.High Load Bearing Capacity and Low Friction of MoS2 /Ti Composite Films by Magnetron Sputtering [J].Tribology,2015,35(3):259-265.
    [45] 谷继品, 蔡群, 钱建国, 等. Si/MoS2及C-Si/MoS2涂层在不同湿度条件下摩擦磨损性能 [J]. 润滑与密封, 2020, 45(7): 111-116,122.GU J P,CAI Q,QIAN J G,et al.Tribological behavior of Si / MoS2 and C-Si/MoS2 Coatings under different humidity conditions [J].Lubrication Engineering,2020,45(7):111-116,122.
    [46] BAI Y,PU J,WANG H,et al.High humidity and high vacuum environment performance of MoS2/Sn composite film [J]. Journal of Alloys and Compounds,2019,800:107-115.
    [47] ZENG C,PU J,WANG H,et al. Study on atmospheric tribology performance of MoS2-W films with self-adaption to temperature [J].Ceramics International,2019,45(13):15834-15842.
    [48] ZENG C,PU J,WANG H,et al.Influence of microstructure on tribological properties and corrosion resistance of MoS2/WS2 films [J].Ceramics International,2020,46(9): 13774-137783.
    [49] REN S,SHANG K,CUI M,et al.Structural design of MoS2-based coatings toward high humidity and wide temperature [J].Journal of Materials Science,2019,54(18):11889-11902.
    [50] 李强.二维材料石墨烯、二硫化钼与环境的相互作用机理研究 [D].兰州:兰州交通大学, 2019.LI Q.Interaction mechanism study between two-dimensional materials graphene, molybdenum disulfide and environment [D].Lanzhou:Lanzhou Jiaotong University, 2019.
    [51] LI H,YI P,ZHANG D,et al.Integration of MoST and Graphit-iC coatings for the enhancement of tribological and corrosive properties [J].Applied Surface Science,2020,506: 144961.
    [52] LI L,LU Z,PU J,et al.The superlattice structure and self-adaptive performance of C-Ti/MoS2 composite coatings [J]. Ceramics International, 2020, 46(5): 5733-5744.
    [53] ZHANG R,XIONG L,PU J,et al.Interface-sliding-induced graphene quantum dots transferring to fullerene-like quantum dots and their extraordinary tribological behavior [J]. Advanced Materials Interfaces, 2019, 6(24): 1901386.
    [54] WANG W, ZHENG S, PU J, et al. Microstructure, mechanical and tribological properties of Mo-V-N films by reactive magnetron sputtering [J]. Surface and Coatings Technology, 2020, 387: 125532.
    [55] WANG W, PU J, CAI Z, et al. Insights into friction properties and mechanism of self-lubricating MoVN–Ag films at high temperature [J]. Vacuum, 2020, 176: 109332.
    [56] QIAN J, LI S, PU J, et al. Effect of heat treatment on structure and properties of molybdenum nitride and molybdenum carbonitride films prepared by magnetron sputtering [J]. Surface and Coatings Technology, 2019, 374: 725-735.
    [57] CAI Z, CHEN R, WANG W, et al. Microstructure and tribological properties of Cu-doped VCN films: The role of Cu [J]. Applied Surface Science, 2020, 510: 145509.
    [58] CAI Q,LI S,PU J,et al.Effect of multicomponent doping on the structure and tribological properties of VN-based coatings [J].Journal of Alloys and Compounds,2019,806: 566-574.
    [59] CAI Z, WU Y, PU J. High-temperature friction and wear behavior of varying-C VN films [J].Journal of Materials Engineering and Performance, 2021,30(3): 2057-2065.
    [60] CAI Z, PU J, WANG L, et al. Synthesis of a new orthorhombic form of diamond in varying-C VN films: Microstructure, mechanical and tribological properties [J]. Applied Surface Science, 2019, 481: 767-776.
    [61] CAI Z, PU J, LU X, et al. Improved tribological property of VN film with the design of pre-oxidized layer [J]. Ceramics International, 2019, 45(5): 6051-6057.
    [62] CAI Z, CHEN R, QIAN J, et al. Improving scratch-resistance and wear-resistance of VN film by deep cryogenic treatment with liquid nitrogen [J]. Surface Engineering, 2020, 36(2): 206-215.
    [63] 蒋钊, 高恒蛟, 周晖, 等. 原子层沉积技术改性CrN硬质涂层性能的第一性原理研究 [J].表面技术,https://kns.cnki.net/kcms/detail/50.1083.TG.20210623.1639.030.html.JIANG Z, GAO H J, ZHOU H, et al. First-principles calculations on the performance of the atom layer deposition modified CrN hard coatings [J]. Surface Technology,https://kns.cnki.net/kcms/detail/50.1083.TG.20210623.1639.030.html.
    [64] 鞠鹏飞, 王海新, 蒲吉斌, 等. CrN和CrSiN薄膜在不同介质下的摩擦学性能 [J]. 润滑与密封, 2016, 41(10): 86-90,140.JU P F, WANG H X, PU J B, et al. Tribological properties of CrN and CrSiN films under different medium [J]. Lubrication Engineering, 2016, 41(10): 86-90,140.
    [65] CHEN Y, WANG S, HAO Y, et al. Friction and wear behavior of CrN coating on 316L stainless steel in liquid sodium at elevated temperature [J]. Tribology International, 2020, 143: 106079.
    [66] LIU E, YU B, XUE Y, et al. Microstructure and mechanical properties of a CrCN/Cr multilayer film [J]. Materials Research Express, 2020, 7(9): 096406.
    [67] WAN S, PU J, LI D, et al. Tribological performance of CrN and CrN/GLC coated components for automotive engine applications [J]. Journal of Alloys and Compounds, 2017, 695: 433-442.
    [68] CAI Q, LI S, PU J, et al. Corrosion resistance and antifouling activities of silver-doped CrN coatings deposited by magnetron sputtering [J]. Surface and Coatings Technology, 2018, 354: 194-202.
    [69] 崔明君, 任思明, 王永刚, 等. 石墨烯基防腐涂层研究进展 [J]. 表面技术, 2019, 48(6): 46-55.CUI M J, REN S M, WANG Y G, et al. Research progress of the graphene coatings for corrosion protection [J].Surface Technology, 2019, 48(6): 46-55.
    [70] 彭玉峰, 王敬, 路战胜, 等. 单层石墨烯水分子吸附对其光学性质的影响 [J]. 原子与分子物理学报, 2016, 33(3): 377-384.PENG Y F, WANG J, LU Z S, et al. Effects on optical properties of the adsorption of water molecules on graphene [J]. Journal of Atomic and Molecular Physics,2016,33(3): 377-384.
    [71] CRACIUN M F, RUSSO S, YAMAMOTO M, et al. Tunable electronic properties in graphene [J].Nano Today, 2011, 6(1):28330.
    [72] BALANDIN A A, GHOSH S, TEWELDEBRHAN D, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in silicon nanoelectronics[C].Proceedings of the 2008 IEEE Silicon Nanoelectronics Workshop, Honolulu, HI: 2008.
    [73] BUNCH J S, VERBRIDGE S S, ALDEN J S, et al. Impermeable Atomic Membranes from Graphene Sheets [J]. Nano Letters, 2008, 8(8): 2458-2462.
    [74] 孙立三,王春婷,卢光明,等.防腐抗冲蚀复合涂层制备及性能研究[J].腐蚀科学与防护技术,2019,31(4): 424-428.SUN L S,WANG C T,LU M G,et al.Preparation and properties of a new corrosion- and erosion-resistant composite coating [J].Corrosion Science And Protection Technology, 2019, 1(4): 424-428.
    [75] CUI M, ZHAO H, WANG L, et al. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating [J]. Chemical Engineering Journal, 2018, 335: 255-66.
    [76] CUI M,REN S,PU J,et al.Poly(o-phenylenediamine) modified graphene toward the reinforcement in corrosion protection of epoxy coatings [J].Corrosion Science, 2019, 159: 108131.
    [77] CHEN C, QIU S, CUI M, et al. Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene [J]. Carbon, 2017, 114: 356-366.
    [78] LI H,PU J,ZHANG R.Long-term corrosion protection of Q235 steel by graphene oxide composite coating [J].Surface Topography:Metrology and Properties,2019,7(4): 045022.
    [79] YANG X, ZHANG R, PU J, et al. 2D graphene and h-BN layers application in protective coatings [J].Corrosion Reviews,2021,39(2):93-107.
    [80] WANG J,DU P, DING J, et al.Graphene oxide enhanced aqueous epoxy composite coating derived from sustainable cardanol resource for corrosion protection [J]. Surface Topography: Metrology and Properties,2019,7(4): 044002.
    [81] WANG J,DU P, HAO H, et al. Novel nitrogen doped carbon dots enhancing the anticorrosive performance of waterborne epoxy coatings [J].Nanoscale Advances,2019,1(9): 3443-3451.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒲吉斌,安煜东,王海新.航天功能防护涂层设计与调控[J].宇航材料工艺,2021,51(4):84-94.

复制
分享
文章指标
  • 点击次数:1348
  • 下载次数: 2149
  • HTML阅读次数: 700
  • 引用次数: 0
历史
  • 收稿日期:2021-06-18
  • 最后修改日期:2021-08-04
  • 录用日期:2021-08-02
  • 在线发布日期: 2021-08-25
  • 出版日期: 2021-08-30
文章二维码