航天飞行器热防护涂层研究进展
作者:
作者单位:

(航天材料及工艺研究所,先进功能复合材料重点实验室, 北京 100076)

作者简介:

王开石,1983年出生,博士,主要从事防热材料的研究。E-mail:45873365@qq.com

中图分类号:

TB3


Developments of Coating Materials in the Thermal Protection System of Spacecrafts
Author:
Affiliation:

(Science and Technology of Advanced Functional Composites Laboratory,Aerospace Research Institute of Materials & Processing Technology,Beijing 100076)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来,新研航天飞行器气动热环境往往具有高焓、高热流密度和长时间加热等特点,这促使防热材料的研制朝着低密度、高抗烧蚀、优良隔热等性能的方向发展。受自身材料类型的限制,无论烧蚀型(树脂基)或非烧蚀型(陶瓷基)防热材料都可以通过对烧蚀表面进行涂层处理的手段达到弥补材料性能短板,提高使用性能的目的。本文试图梳理、总结国内外近年来热防护系统用涂层材料的发展状况,探讨各自的优势和缺点,并提出了针对树脂基复合材料热防护涂层可能趋势的推测。

    Abstract:

    The aerodynamic heating environment for spacecrafts currently under development typically possesses the following characteristics:high enthalpy, high heat flux and long heating time. This in turn has lead to the shift of active research work of heat shield materials, e.g., phenolic-resin based composites, towards enhancing properties such as higher ablation resistance, good heat insulation and even lower densities. To overcome the limitation of materials’ intrinsic properties and to improve their performances, both ablative(resin based) and non-ablative(ceramic based) types of heat shield materials can be further optimized by applying functional coating materials on top of the ablation surface. This review has focused on the recent research effort on the coating material for different thermal protection systems and categorized them into two major types:ablative and non-ablative. Having obtained a comprehensive understanding about their pros and cons, a possible solution is proposed at the end of this article for resin-based ablative composites:coatings consist of silicon-based preceramic polymers that can be cured around the same temperature as phenolic resin but ceramized in-situ during flight.

    参考文献
    [1] 孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002:359-368.
    [2] 颜梅,等.有机硅耐烧蚀材料的研究进展[J].有机硅材料,2001,15(2):24-27.
    [3] 郑顺兴.烧蚀材料与耐烧蚀酚醛树脂[J].南京航空航天大学学报,1996,28(2):15-17.
    [4] 张多太.环氧隔热耐烧蚀涂料及酚醛树脂烧蚀现象[J].涂料工业,1999(12):22-25.
    [5] 马天信.有机消融涂层防热隔热机理及组成分析[J].制造技术研究,2013(2):10-16.
    [6] 赵英民,等.高效防热隔热涂层应用研究[J].宇航材料工艺,2001,31(3):42-44.
    [7] 张海鹏,等.耐烧蚀防热隔热涂层的研制[J].宇航材料工艺,2012,2(5):69-71.
    [8] 郭亚林,等.某固体发动机壳体外防热涂层研究[J].宇航材料工艺,2003,3(3):21-24.
    [9] ZHENG Tianliang,et al.Study on low density and heat-resistant ablative coating[J].Chinese Journal of Aeronautics,2005,8(4):372-377.
    [10] 左瑞霖,等.环氧类韧性耐烧蚀防热涂层的研制与表征[J].宇航材料工艺,2011,1(2):72-75.
    [11] 罗焱.烧蚀维形防热涂层技术通过鉴定[J].宇航材料工艺,2012,42(6):108.
    [12] 唐绍裘.高性能陶瓷涂层——材料、技术及应用市场[J].陶瓷研究,2002,17(3):24-26.
    [13] 蔡建平,等.热喷涂陶瓷涂层[J].机械工程材料,2000,24(1):5-7.
    [14] 刘耀斌,等.陶瓷涂层热喷涂制备工艺[J].现代技术陶瓷,2004,99:45-48.
    [15] 孙方红,等.反应热喷涂制备陶瓷涂层的研究进展[J].材料保护,2013,46(4):48-50.
    [16] 苑英志,等.镍基高温合金陶瓷涂层的制备及性能表征[J].电镀与涂饰,2013,32(4):73-76.
    [17] 张书品,等.不同配比Cr2O3陶瓷涂层耐磨性能评定[J].热加工工艺,2013,42(2):125-126.
    [18] 胡鹏,等.Ni基合金高温抗氧化陶瓷涂层的制备及性能表征[J].热加工工艺,2013,42(8):145-147.
    [19] 黎仕增,等.La2O3对钢基陶瓷涂层组织与性能的影响[J].热加工工艺,2013,42(4):152-160.
    [20] 王德朋,等.HfC陶瓷涂层的制备与性能分析[J].广东有色金属学报,2006,16(1):19-21.
    [21] 熊翔,等.化学气相沉积ZrC陶瓷涂层的微观结构和抗烧蚀性能[J].中国材料进展,2011,30(11):18-24.
    [22] 周海军,等.ZrB2-SiC超高温陶瓷涂层的抗烧蚀性能研究[J].无机材料学报,2013,28(3):256-260.
    [23] HOWARD E.GOLDSTEIN,et al.United States Patent 4093771,June 6,8.
    [24] DANIEL B.LEISER,et al.United States Patent 5079082, Jan.7,2.
    [25] 鲁芹,等.高超声速飞行器陶瓷复合材料与热结构技术研究进展[J].硅酸盐学报,2013,41(2):251-260.
    [26] DAVID A S,et al.Lightweight TUFROC TPS for Hypersonic Vehicles[R].Canberra, AIAA 20067945.
    [27] MEADOR M A,et al.Coatings for high temperature polymer composites[R].International SAMPE Symposium and Exhibition,2001.
    [28] IVOSEVIC M,et al.Microstructure and properties of thermally sprayed functionally graded coatings for polymeric substrates[R].International thermal spray conference and exposition,2003.
    [29] 张艳良,等.高温树脂基复合材料防护用轻质陶瓷涂层的制备[J].焊接学报,2005,26(3):5-8
    [30] COLOMBO P,et al.Polymer-derived ceramics:40 years of research and innovation in advanced ceramics[J].Journal of the American Ceramic Society,2010,3(7):1805-1837.
    [31] 赵雪莲,等.活性填料对聚硼硅氮烷制备不锈钢陶瓷涂层性能的影响[J].人工晶体学报,2013,42(3):548-551
    [32] 肖平,等.新型化学反应法制备SiC/Al2O3复相陶瓷涂层[J].中国表面工程,2009,22(6):24-29
    [33] WANG K,et al.Control of surface energy of silicon oxynitride films[J].Langmuir,2013,9:2889-2896.
    [34] WANG K,et al.The conversion of perhydropolysilazane into SiON films:bonding states characterized by X-ray photoelectron spectroscopy[J].Journal of the American Ceramic Society,2012,5(12):3722-3725.
    [35] WANG K,et al.High performance environmental barrier coatings,Part II:active filler loaded SiOC system for superalloys[J].Journal of the European Ceramic Society,2011,1(15):3011-3020.
    [36] GüNTHNER M,et al.High performance environmental barrier coatings,Part I:passive filler loaded SiCN system for steel[J].Journal of the European Ceramic Society,2011,1(15):3003-3010.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王开石,匡松连.航天飞行器热防护涂层研究进展[J].宇航材料工艺,2016,46(6):1-5.

复制
分享
文章指标
  • 点击次数:4906
  • 下载次数: 12772
  • HTML阅读次数: 229
  • 引用次数: 0
历史
  • 收稿日期:2016-04-05
  • 最后修改日期:2016-04-05
  • 在线发布日期: 2016-12-28
文章二维码
《宇航材料工艺》2025年青年编委招募启事

关闭